Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
#define DCMD_AUDIO_GET_SAMPLE_RATE 2
int io_devctl(resmgr_context_t *ctp, io_devctl_t *msg,
iofunc_ocb_t *ocb) {
int sts;
void *data;
int nbytes;
if ((sts =
iofunc_devctl_default(ctp, msg, ocb)) !=
_RESMGR_DEFAULT) {
return (sts);
}
// 1) Установить указатель на область данных сообщения
data = _DEVCTL_DATA(msg);
// 2) Установить число возвращаемых байт в 0
nbytes = 0;
// Проверить все команды; покажем только те, которые нам
// здесь интересны
switch (msg->i.dcmd) {
...
// 3) Обработать команду SET
case DCMD_AUDIO_SET_SAMPLE_RATE:
audio_set_samplerate(*(int*)data);
break;
// 4) Обработать команду GET
case DCMD_AUDIO_GET_SAMPLE_RATE:
*(int*)data = audio_get_samplerate();
nbytes = sizeof(int);
break;
...
}
// 5) Возвратить данные (если есть) клиенту
memset(&msg->о, 0, sizeof(msg->о));
msg->о.nbytes = nbytes;
SETIOV(ctp->iov, &msg->o, sizeof(msg->o) + nbytes);
return (_RESMGR_NPARTS(1));
}
В «шапке» мы декларировали указатель типа void*
по имени data («данные»), которые мы будем использовать в качестве универсального указателя на область данных. Если вы обратитесь к приведенному выше описанию io_devctl() , то вы увидите, что структура данных состоит из объединения заголовков входной и выходной структур, за которым неявно следует область данных. На этапе 1 указатель на эту область данных возвращается макросом _DEVCTL_DATA() .
Здесь мы должны указать, сколько байт мы собираемся возвратить клиенту. Я для удобства обнулил переменную nbytes перед выполнением каких-либо действий — теперь мне не придется принудительно обнулять ее в каждой ветви switch
/ case
.
Пришло время для команды «set» («установить»). Мы вызываем фиктивную функцию audio_set_samplerate() и передаем ей значение частоты дискретизации, полученное разыменованием указателя data (который мы коварно выставили указателем на целое число... нет, никакого коварства, обычный для Си прием приведения типов). Это ключевой механизм, потому что это и есть наш способ «интерпретации» области данных (клиентского указателя dev_data_ptr ) в соответствии с командой. В более сложном случае вы, наверное, выполнили бы приведение его типа к какой-нибудь структуре побольше вместо простого целого числа. Очевидно, что описания этой структуры на стороне как клиента, так и администратора ресурсов, должны быть идентичными, поэтому лучшим местом для описания такой структуры является заголовочный файл, в котором хранятся ваши командные константы DCMD_*
Обработка команды «get» («получить») на этапе 4 во многом аналогична (по части приведения типов), кроме того, что на этот раз мы записываем данные в структуру вместо считывания из нее. Заметьте, что мы также присваиваем переменной nbytes число байт, которые мы хотим возвратить клиенту. В случае более сложного доступа к данным вы должны были бы возвратить размер области данных (т.е. если бы эта область была бы структурой, вам нужно было бы возвратить ее размер).
Наконец, для возврата данных клиенту мы должны вспомнить, что клиент ожидает не только возвращаемые данные (если таковые имеются), но и заголовочную структуру, за которой идут эти данные. Поэтому на этом этапе мы обнуляем заголовочную структуру и устанавливаем число байт (поле nbytes ) в число байт, которые мы намерены возвратить (вспомните, мы обнуляли это значение ранее). Затем мы создаем одноэлементный вектор ввода/ вывода с указателем на заголовок и расширяем размер заголовка на число возвращаемых байт. В конце мы просто сообщаем библиотеке администратора ресурсов, что мы возвращаем клиенту одноэлементный вектор ввода/вывода.
Вспомните рассуждения про следующую за заголовком область данных из примера io_write() , приведенного выше. Мы утверждали, что байты, расположенные сразу после заголовка, могут как быть полноценными, так и нет (то есть возможны случаи, когда область данных со стороны клиента была считана лишь частично) — в зависимости от того, сколько данных считала библиотека администратора ресурсов. Затем мы говорили о том, что было бы неэффективно пытаться «сэкономить» лишнюю операцию обмена сообщениями и «повторно использовать» область данных. Однако, в случае с devctl() все обстоит несколько иначе, особенно если количество передаваемых данных достаточно невелико (как было и в наших примерах). Здесь у нас есть неплохой шанс того, что данные от клиента были-таки считаны в область данных целиком, и тогда повторное их считывание будет напрасной тратой сил. Узнать, сколько у вас доступно пространства, очень просто: поле size («размер») структуры ctp содержит число байт, доступных для вас, начиная с параметра msg . Размер доступной области данных, расположенной за буфером сообщений, вычисляется как разность между размером буфера сообщений и полем size структуры ctp :
data_area_size = ctp->size - sizeof(*msg);
Отметим, что этот размер будет действителен также и в случае возврата данных клиенту (как при команде DCMD_AUDIO_GET_SAMPLE_RATE).
Для всего, что превосходит по размеру выделенную область, вам придется получать данные от клиента так же, как мы это делали в примере с io_write() (см. выше), а также выделить буфер для возврата данных клиенту.
Дополнительно
Теперь, после того как мы овладели «основами» построения администраторов ресурсов, пришло время рассмотреть более сложные вопросы. К ним относятся:
• расширение OCB;
• расширение атрибутной записи;
• блокирование в пределах администратора ресурсов;
• возврат элементов каталога.
Расширение OCB
В ряде случаев у вас может возникнуть необходимость расширения OCB. Процедура эта является относительно безболезненной. Обычно OCB расширяют дополнительными флагами, характеризующими каждый конкретный open() . Один такой флаг можно было бы использовать с обработчиком io_unblock() для кэширования значения флага ядра _NTO_MI_UNBLOCK_REQ (подробнее см. параграф «Применение флага _NTO_MI_UNBLOCK_REQ» в главе «Обмен сообщениями»).
Для расширения блока OCB вам нужно будет обеспечить две дополнительных функции: одну для выделения OCB, и одну — для его освобождения. Затем вы должны будете привязать эти две функции к записи точки монтирования. (Да-да, совершенно верно — вам понадобится запись точки монтирования, даже если только для этого.) И наконец, вы должны будете определить ваш собственный тип OCB, чтобы все прототипы в программе были корректны.
Давайте рассмотрим сначала описание типа OCB, а затем уже поглядим, как переопределяются функции:
Читать дальшеИнтервал:
Закладка: