Андрей Робачевский - Операционная система UNIX
- Название:Операционная система UNIX
- Автор:
- Жанр:
- Издательство:BHV - Санкт-Петербург
- Год:1997
- Город:Санкт-Петербург
- ISBN:5-7791-0057-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Робачевский - Операционная система UNIX краткое содержание
Книга посвящена семейству операционных систем UNIX и содержит информацию о принципах организации, идеологии и архитектуре, объединяющих различные версии этой операционной системы.
В книге рассматриваются: архитектура ядра UNIX (подсистемы ввода/вывода, управления памятью и процессами, а также файловая подсистема), программный интерфейс UNIX (системные вызовы и основные библиотечные функции), пользовательская среда (командный интерпретатор shell, основные команды и утилиты) и сетевая поддержка в UNIX (протоколов семейства TCP/IP, архитектура сетевой подсистемы, программные интерфейсы сокетов и TLI).
Для широкого круга пользователей
Операционная система UNIX - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 3.6. Трансляция адреса с использованием механизма сегментации
Если страничный механизм не используется, полученный линейный адрес является физическим, используемым для непосредственного доступа к оперативной памяти. Однако реализация виртуальной памяти, основанная только на сегментах, не обладает достаточной гибкостью и не используется в современных версиях UNIX. Управление памятью в большинстве систем основано на страничном механизме. Сегменты используются ядром для размещения кода, данных и стека процесса, причем каждый из них имеет нулевой базовый адрес и предел — 3 Гбайт, т.е. всю адресуемую виртуальную память за вычетом 1 Гбайт, занимаемых ядром системы. Распределение виртуального адресного пространства между ядром и процессами рассмотрено в разделе "Адресное пространство процесса".
Страничный механизм
При реализации виртуальной памяти, основанной только на сегментации, весь сегмент целиком может либо присутствовать в оперативной памяти, либо отсутствовать (точнее, находиться во вторичной памяти или в исполняемом файле процесса). Поскольку размер сегмента может быть достаточно велик, одновременное выполнение нескольких больших процессов вызовет серьезную конкуренцию за ресурсы памяти, что в свою очередь приведет к интенсивному обмену данными между оперативной и вторичной памятью. К тому же обмен областями переменного размера, каковыми являются сегменты, достаточно сложен и, хотя фрагментация памяти при этом будет невелика, приведет к низкой эффективности ее использования, оставляя большое количество неиспользуемого пространства.
Страничный механизм обеспечивает гораздо большую гибкость. В этом случае все виртуальное адресное пространство (4 Гбайт для процессоров Intel) разделено на блоки одинакового размера, называемые страницами. Большинство процессоров Intel работает со страницами размером 4 Кбайт. Так же как и в случае сегментации, страница может либо присутствовать в оперативной памяти, либо находиться в области свопинга или исполняемом файле процесса. Основное преимущество такой схемы заключается в том, что система управления памятью оперирует областями достаточно малого размера для обеспечения эффективного распределения ресурсов памяти между процессами. Страничный механизм допускает, чтобы часть сегмента находилась в оперативной памяти, а часть отсутствовала. Это дает ядру возможность разместить в памяти только те страницы, которые в данное время используются процессом, тем самым значительно освобождая оперативную память. Еще одним преимуществом является то, что страницы сегмента могут располагаться в физической памяти в произвольном месте и порядке, что позволяет эффективно использовать свободное пространство [30] Данный подход напоминает схему хранения файлов на диске — каждый файл состоит из различного числа блоков хранения данных, которые могут располагаться в любых свободных участках дискового накопителя. Это ведет к значительной фрагментации, но существенно повышает эффективность использования дискового пространства.
.
При использовании страничного механизма линейный адрес, полученный в результате сложения базового адреса сегмента и смещения также является логическим адресом, который дополнительно обрабатывается блоком страничной трансляции процессора. В этом случае линейный адрес рассматривается процессором как состоящий из трех частей, показанных на рис. 3.7.

Рис. 3.7. Трансляция адреса с использованием страничного механизма
Первое поле адреса, с 22 по 31 бит, указывает на элемент каталога таблиц страниц (Page Directory Entry, PDE). Каталог таблиц страниц имеет длину, равную одной странице, и содержит до 1024 указателей на таблицы страниц (page table). Таким образом, первое поле адресует определенную таблицу страниц. Второе поле, занимающее с 12 по 21 бит, указывает на элемент таблицы страниц (Page Table Entry, РТЕ). Таблицы страниц также имеют длину 4 Кбайт, а элементы таблицы адресуют в совокупности 1024 страниц. Другими словами, второе поле адресует определенную страницу. Наконец, смещение на странице определяется третьим полем, занимающим младшие 12 бит линейного адреса. Таким образом, с помощью одного каталога таблиц процесс может адресовать 1024×1024×4096 = 4 Гбайт физической памяти.
На рис. 3.7 показано, как блок страничной адресации процессора транслирует линейный адрес в физический. Процессор использует поле PDE адреса (старшие 10 бит) в качестве индекса в каталоге таблиц. Найденный элемент содержит адрес таблицы страниц. Второе поле линейного адреса, РТЕ, позволяет процессору выбрать нужный элемент таблицы, адресующий физическую страницу. Складывая адрес начала страницы со смещением, хранящимся в третьем поле, процессор получает 32-битный физический адрес. [31] Следует отметить, что большинство современных процессоров и, в частности, процессоры семейства Intel, помещают данные о нескольких последних использовавшихся ими страницах в сверхоперативный кэш. Только когда процессор не находит требуемой страницы в этом кэше, он обращается к каталогу и таблицам страниц. Как правило, 98–99% адресных ссылок попадают в кэш, не требуя для трансляции адреса обращения к оперативной памяти, где расположены каталог и таблицы.
Каждый элемент таблицы страниц содержит несколько полей (табл. 3.2), описывающих различные характеристики страницы.
Таблица 3.2. Поля РТЕ
P | Признак присутствия в оперативной памяти. Доступ к странице, отсутствующей в памяти (P=0) вызывает страничную ошибку, особую ситуацию, о чем процессор информирует ядро, которое обрабатывает ее соответствующим образом. |
R/W | Права только на чтение страницы (R/W=0) или на чтение и запись (R/W=1). |
U/S | Привилегии доступа. Если U/S = 0, только привилегированные задачи (ядро) имеют доступ к адресам страницы. В противном случае, доступ к странице имеют все задачи. |
Адрес | Физический адрес начала страницы (адрес базы). |
Адресное пространство процесса
Адресное пространство ядра обычно совпадает с адресным пространством выполняющегося в данный момент процесса. В этом случае говорят, что ядро расположено в том же контексте, что и процесс. Каждый раз, когда процессу передаются вычислительные ресурсы, система восстанавливает контекст задачи этого процесса, включающий значения регистров общего назначения, сегментных регистров, а также указатели на таблицы страниц, отображающие виртуальную память процесса в режиме задачи. При этом системный контекст остается неизменным для всех процессов. Вид адресного пространства процесса представлен на рис. 3.8.
Читать дальшеИнтервал:
Закладка: