Брайан Керниган - UNIX — универсальная среда программирования
- Название:UNIX — универсальная среда программирования
- Автор:
- Жанр:
- Издательство:Финансы и статистика
- Год:1992
- Город:Москва
- ISBN:5-289-00253-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Керниган - UNIX — универсальная среда программирования краткое содержание
В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.
Для программистов-пользователей операционной системы UNIX.
UNIX — универсальная среда программирования - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
if (strcmp(sp->name, s) == 0)
return sp;
return 0; /* 0 ==> not found */
}
Symbol *install(s, t, d) /* install s in symbol table */
char *s;
int t;
double d;
{
Symbol *sp;
char *emalloc();
sp = (Symbol*)emalloc(sizeof(Symbol));
sp->name = emalloc(strlen(s)+1); /* +1 for '\0' */
strcpy(sp->name, s);
sp->type = t;
sp->u.val = d;
sp->next = symlist; /* put at front of list */
symlist = sp;
return sp;
}
char *emalloc(n) /* check return from malloc */
unsigned n;
{
char *p, *malloc();
p = malloc(n);
if (p == 0)
execerror("out of memory", (char*)0);
return p;
}
$
Файл init.c
содержит определения констант ( PI
и т.п.) и указатели на встроенные функции; они заносятся в таблицу имен функцией init
, находящейся в main
.
$ cat init.c
#include "hoc.h"
#include "y.tab.h"
#include
extern double Log(), Log10(), Exp(), Sqrt(), integer();
static struct { /* Constants */
char *name;
double cval;
} consts[] = {
"PI", 3.14159265358979323846,
"E", 2.71828182845904523536,
"GAMMA", 0.57721566490153286060, /* Euler */
"DEG", 57.29577951308232087680, /* deg/radian */
"PHI", 1.61803398874989484820, /* golden ratio */
0, 0
};
static struct { /* Built-ins */
char *name;
double (*func)();
} builtins[] = {
"sin", sin,
"cos", cos,
"atan", atan,
"log", Log, /* checks argument */
"log10", Log10, /* checks argument */
"exp", Exp, /* checks argument */
"sqrt", Sqrt, /* checks argument */
"int", integer,
"abs", fabs,
0, 0
};
init() /* install constants and built-ins in table */
{
int i;
Symbol *s;
for (i = 0; consts[i].name; i++)
install(consts[i].name, VAR, consts[i].cval);
for (i = 0; builtins[i].name; i++) {
s = install(builtins[i].name, BLTIN, 0.0);
s->u.ptr = builtins[i].func;
}
}
Данные хранятся в таблицах, а не вводятся в текст программы, чтобы легче было их читать и изменять. Таблицы определены как статические, что обеспечивает их доступность только в данном файле. Мы вскоре вернемся к обсуждению стандартных математических функций типа Log
и Sqrt
.
Построив такой базис, можно перейти к изменениям в грамматике, которые осуществляются на его основе.
$ cat hoc.y
%{
#include "hoc.h"
extern double Pow();
%}
%union {
double val; /* actual value */
Symbol *sym; /* symbol table pointer */
}
%token NUMBER
%token VAR BLTIN UNDEF
%type expr asgn
%right '='
%left '+'
%left '*' '/'
%left UNARYMINUS
%right '^' /* exponentiation */
%%
list: /* nothing */
| list '\n'
| list asgn '\n'
| list expr '\n' { printf("\t%.8g\n", $2); }
| list error '\n' { yyerrok; }
;
asgn: VAR '=' expr { $$=$1->u.val=$3; $1->type = VAR; }
;
expr: NUMBER
| VAR {
if ($1->type == UNDEF)
execerror("undefined variable", $1->name);
$$ = $1->u.val;
}
| asgn
| BLTIN '(' expr ')' { $$ = (*($1->u.ptr))($3); }
| expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr {
if ($3 == 0.0)
execerror("division by zero", ""); $$ = $1 / $3;
}
| expr '^' expr { $$ = Pow($1, $3); }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UNARYMINUS { $$ = -$2; }
;
%%
/* end of grammar */
...
Теперь в грамматике присутствует asgn
для присваивания, подобно expr
для выражения. Входная строка, состоящая только из
VAR = expr
является присваиванием, и, следовательно, ни одно из значений не печатается. Заметьте, кстати, как мы легко добавили к грамматике операцию возведения в степень, являющуюся правоассоциативной.
Для стека yacc
используется другое определение %union
: вместо представления переменной как индекса в массиве из 26 элементов введен указатель на объект типа Symbol
. Файл макроопределений hoc.h
содержит определение этого типа.
Лексический анализатор распознает имена переменных, находит их в таблице имен и определяет, относятся ли они к переменным ( VAR
) или к встроенным функциям ( BLTIN
). Функция yylex
возвращает один из указанных типов. Заметим, что определенные пользователем переменные и предопределенные переменные типа PI
относятся к VAR
.
Одно из свойств переменной состоит в том, что ей может быть присвоено либо не присвоено значение, поэтому обращение к не определенной переменной должно диагностироваться программой yyparse
как ошибка. Возможность проверки переменной (определена она или нет) должна быть предусмотрена в грамматике, а не в лексическом анализаторе. Когда VAR
распознается на лексическом уровне, контекст пока еще не известен, но нам не нужны сообщения о том, что x
не определен, хотя контекст и вполне допустимый, как, например, x
в присваивании типа x = 1
.
Ниже приводится измененная часть функции yylex
:
yylex() /* hoc3 */
{
...
if (isalpha(c)) {
Symbol *s;
char sbuf[100], *p = sbuf;
do {
*p++ = c;
} while ((c=getchar()) != EOF && isalnum(c));
ungetc(c, stdin);
*p = '\0';
if ((s=lookup(sbuf)) == 0)
s = install(sbuf, UNDEF, 0.0);
yylval.sym = s;
return s->type == UNDEF ? VAR : s->type;
}
...
В функции main
добавлена еще одна строка, в которой вызывается процедура инициации init
для занесения в таблицу имен встроенных и предопределенных имен типа PI
:
main(argc, argv) /* hoc3 */
char *argv[];
{
int fpecatch();
progname = argv[0];
init();
setjmp(begin);
signal(SIGFPE, fpecatch);
yyparse();
}
Теперь остался только файл math.с
. Для некоторых стандартных математических функций требуется обработка ошибок для диагностики и восстановления, например, стандартная функция по умолчанию возвращает 0, если аргумент отрицателен. Функции из файла math.с
используют контроль ошибок, описанный в разд. 2 справочного руководства по UNIX (см. гл. 7). Это более надежный и переносимый вариант, чем введение своих проверок, так как, вероятно, конкретные ограничения функций полнее учитываются в "официальной" программе. Файл макроопределений содержит описания типов для стандартных математических функций, а файл — определения фатальных ошибок:
$ cat math.с
#include
#include
extern int errno;
double errcheck();
double Log(x)
double x;
{
return errcheck(log(x), "log");
}
double Log10(x)
double x;
{
return errcheck(log10(x), "log10");
}
double Sqrt(x)
double x;
{
return errcheck(sqrt(x), "sqrt");
}
double Exp(x)
double x;
{
return errcheck(exp(x), "exp");
}
double Pow(x, y)
double x, y;
Интервал:
Закладка: