Таня Шлюссер - Автостопом по Python

Тут можно читать онлайн Таня Шлюссер - Автостопом по Python - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство Питер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Автостопом по Python
  • Автор:
  • Жанр:
  • Издательство:
    Питер
  • Год:
    2017
  • Город:
    СПб.
  • ISBN:
    978-5-496-03023-6
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Таня Шлюссер - Автостопом по Python краткое содержание

Автостопом по Python - описание и краткое содержание, автор Таня Шлюссер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Перед вами — увлекательная книга, которую по достоинству оценит любой неравнодушный программист и даже бывалый питонщик. Она составлена на основе одноименного онлайнового руководства
и содержит наработки многочисленных профессионалов и энтузиастов, знающих, что такое Python, и чего вы от него хотите. Проверенные методы и новейшие приемы, собранные в этой книге, помогут вам стать профессиональным Python-программистом и во всеоружии встретить наступающую эпоху Python 3.

Автостопом по Python - читать онлайн бесплатно полную версию (весь текст целиком)

Автостопом по Python - читать книгу онлайн бесплатно, автор Таня Шлюссер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
unittest

unittest — это тестовый модуль стандартной библиотеки Python, готовый к работе сразу после установки. Его API будет знаком всем, кто пользовался любым из этих инструментов — JUnit (Java)/nUnit (.NET)/CppUnit (C/C++).

Создать тест в этом модуле можно путем создания подкласса для unittest.TestCase. В этом примере функция тестирования определяется как новый метод в MyTest:

# test_example.py

import unittest

def fun(x):

····return x + 1

class MyTest(unittest.TestCase):

····def test_that_fun_adds_one(self):

········self.assertEqual(fun(3), 4)

class MySecondTest(unittest.TestCase):

····def test_that_fun_fails_when_not_adding_number(self):

········self.assertRaises(TypeError, fun, "multiply six by nine")

картинка 23

Методы теста должны начинаться со строки test — иначе они не запустятся. Тестовые модули должны следовать шаблону test*.py по умолчанию, но могут соответствовать любому шаблону, который вы передадите с помощью аргумента с ключевым словом pattern в командной строке.

Для того чтобы запустить все тесты в TestClass, откройте терминальную оболочку. Находясь в том же каталоге, где файл, вызовите из командной строки модуль unittest:

$ python — m unittest test_example.MyTest

.

---

Ran 1 test in 0.000s

OK

Для запуска всех тестов из файла укажите файл:

$ python — m unittest test_example

.

---

Ran 2 tests in 0.000s

OK

Mock (в модуле unittest)

В версии Python 3.3 unittest.mock ( https://docs.python.org/dev/library/unittest.mock) доступен в стандартной библиотеке. Он позволяет заменять тестируемые части системы mock-объектами и делать предположения о том, как они используются.

Например, вы можете написать обезьяний патч для метода, похожий на тот, что показан в предыдущем примере (обезьяний патч — это код, который модифицирует или заменяет другой существующий код во время работы программы). В этом коде существующий метод с именем ProductionClass.method (в случае если мы создали именованный объект) заменяется новым объектом MagicMock, который при вызове всегда будет возвращать значение 3. Кроме того, этот объект считает количество получаемых вызовов, записывает сигнатуру, с помощью которой был вызван, и содержит методы с выражением, необходимые для тестов:

from unittest.mock import MagicMock

instance = ProductionClass()

instance.method = MagicMock(return_value=3)

instance.method(3, 4, 5, key='value')

instance.method.assert_called_with(3, 4, 5, key='value')

Для того чтобы создавать mock-классы и объекты при тестировании, используйте декоратор patch. В следующем примере поиск во внешней системе заменяется mock-объектом, который всегда возвращает одинаковый результат (патч существует только во время работы теста):

import unittest.mock as mock

def mock_search(self):

····class MockSearchQuerySet(SearchQuerySet):

········def __iter__(self):

············return iter(["foo", "bar", "baz"])

····return MockSearchQuerySet()

# SearchForm относится к ссылке на импортированный класс

# myapp.SearchForm и модифицирует этот объект, но не код,

# где определяется сам класс SearchForm

@mock.patch('myapp.SearchForm.search', mock_search)

def test_new_watchlist_activities(self):

····# get_search_results выполняет поиск и итерирует по результату

····self.assertEqual(len(myapp.get_search_results(q="fish")), 3)

Вы можете сконфигурировать модуль mock и управлять его поведением разными способами. Они подробно описаны в документации к unittest.mock.

doctest

Модуль doctest выполняет поиск фрагментов текста, которые похожи на интерактивные сессии Python в строках документации, а затем выполняет эти сессии, чтобы убедиться, что они работают именно так, как было показано.

Модуль doctest служит другой цели, нежели юнит-тесты. Они обычно менее детальны и не отлавливают особые случаи или регрессионные ошибки. Вместо этого они выступают в качестве содержательной документации основных вариантов использования модуля и его компонентов (в качестве примера можно рассмотреть сценарий «счастливый путь» (happy path — https://en.wikipedia.org/wiki/Happy_path)). Однако такие тесты должны запускаться автоматически каждый раз, когда запускается весь набор тестов.

Рассмотрим простой пример doctest:

def square(x):

····"""Squares x.

····>>> square(2)

····4

····>>> square(-2)

····4

····"""

····return x * x if __name__ == '__main__':

····import doctest

····doctest.testmod()

Когда вы запускаете этот модуль из командной строки (например, с помощью команды python module.py), такие тесты начнут выполняться и «пожалуются», если какой-то компонент ведет себя не так, как описано в строках документации.

Примеры

В этом разделе мы рассмотрим фрагменты наших любимых пакетов для того, чтобы подчеркнуть правила хорошего тона при тестировании реального кода. Набор тестов предполагает наличие дополнительных библиотек, не включенных в эти пакеты (например, для Requests требуется Flask, чтобы создать mock-сервер HTTP), которые включены в файлы requirements.txt их проектов.

Для всех этих примеров ожидаемым первым шагом будет открытие терминальной оболочки, изменение каталогов таким образом, чтобы они указывали на то место, где лежат исходники к вашим проектам, а также клонирование репозитория исходного кода и настройка виртуальной среды. Например, так:

$ git clone https://github.com/username/projectname.git

$ cd projectname

$ virtualenv — p python3 venv

$ source venv/bin/activate

(venv)$ pip install — r requirements.txt

Пример: тестирование в Tablib

Tablib использует модуль unittest стандартной библиотеки Python. Набор тестов не поставляется с пакетом. Для получения файлов вы должны клонировать репозиторий GitHub. Приводим основные моменты, выделив главные части.

Для того чтобы использовать юниттест создайте подкласс unittestTestCase и - фото 24 Для того чтобы использовать юниттест создайте подкласс unittestTestCase и - фото 25

картинка 26Для того чтобы использовать юнит-тест, создайте подкласс unittest.TestCase и напишите методы для тестирования, чьи имена начинаются с test. Класс TestCase предоставляет методы с выражением, которые позволяют выполнить проверку на равенство, правдивость, тип данных и наличие исключений (см. документацию по адресу http://bit.ly/unittest-testcaseдля получения более подробной информации).

картинка 27Метод TestCase.setUp() запускается всякий раз перед каждым методом TestCase.

картинка 28Метод TestCase.tearDown() запускается всякий раз после каждого метода TestCase [47] Обратите внимание, что метод unittest.TestCase.tearDown не будет запущен, если в коде есть ошибки. Это может удивить вас, если вы использовали функциональность unittest.mock для того, чтобы изменить реальное поведение кода. В Python 3.1 был добавлен метод unittest.TestCase.addCleanup(). Он помещает функцию очистки и ее аргументы в стек, и эта функция будет вызвана либо после метода unittest.TestCase.tearDown(), либо в любом случае независимо от того, был ли вызван метод tearDown(). Для получения более подробной информации обратитесь к документации метода unittest.TestCase.addCleanup() (см. http://docs.python.org/3/library/unittest.html#unittest.TestCase.addCleanup ). .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Таня Шлюссер читать все книги автора по порядку

Таня Шлюссер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Автостопом по Python отзывы


Отзывы читателей о книге Автостопом по Python, автор: Таня Шлюссер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x