Таня Шлюссер - Автостопом по Python
- Название:Автостопом по Python
- Автор:
- Жанр:
- Издательство:Питер
- Год:2017
- Город:СПб.
- ISBN:978-5-496-03023-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Таня Шлюссер - Автостопом по Python краткое содержание
и содержит наработки многочисленных профессионалов и энтузиастов, знающих, что такое Python, и чего вы от него хотите. Проверенные методы и новейшие приемы, собранные в этой книге, помогут вам стать профессиональным Python-программистом и во всеоружии встретить наступающую эпоху Python 3.
Автостопом по Python - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Все имена тестов должны начинаться со слова test, иначе они не запустятся.
В одном тестовом случае может быть несколько тестов, но каждый из них должен тестировать что-то одно.
Если вы хотите внести вклад в Tablib, первое, что можете сделать после клонирования репозитория, — запустить набор тестов и убедиться, что все работает как полагается. Это можно сделать так:
(venv)$ ### внутри каталога высшего уровня, tablib/
(venv)$ python — m unittest test_tablib.py
……………………………………………………..
---
Ran 62 tests in 0.289s
OK
В версии Python 2.7 метод unittest также содержит собственный механизм обнаружения тестов, который доступен с помощью параметра discover в командной строке:
(venv)$ ### *above* the top-level directory, tablib/
(venv)$ python — m unittest discover tablib/
……………………………………………………..
---
Ran 62 tests in 0.234s
OK
После того как вы убедитесь, что все тесты проходят, вы: а) найдете тестовый случай, связанный с изменяемой частью проекта, и будете часто запускать его при изменении кода; б) напишете новый тестовый случай для функциональности, которую хотите добавить, или для ошибки, которую отслеживаете, и будете часто запускать его при изменении кода. Рассмотрим в качестве примера следующий сниппет:
(venv)$ ### внутри каталога высшего уровня, tablib/
(venv)$ python — m unittest test_tablib.TablibTestCase.test_empty_append
.
---
Ran 1 test in 0.001s
OK
Как только ваш код начнет работать, снова задействуйте весь набор тестов перед тем, как отправить его в репозиторий. Поскольку вы часто запускаете тесты, они должны быть максимально быстрыми. Более подробную информацию о том, как использовать метод unittest, смотрите в документации по адресу http://bit.ly/unittest-library.
Пакет Requests использует py.test. Чтобы увидеть его в действии, откройте терминальную оболочку, перейдите во временный каталог, клонируйте Requests, установите все зависимости и запустите файл py.test, как показано здесь:
$ git clone — q https://github.com/kennethreitz/requests.git
$
$ virtualenv venv — q — p python3 # dash — q for 'quiet'
$ source venv/bin/activate
(venv)$
(venv)$ pip install — q — r requests/requirements.txt # 'quiet' again…
(venv)$ cd requests
(venv)$ py.test
========================= test session starts =================================
platform darwin — Python 3.4.3, pytest-2.8.1, py-1.4.30, pluggy-0.3.1
rootdir: /tmp/requests, inifile:
plugins: cov-2.1.0, httpbin-0.0.7
collected 219 items
tests/test_requests.py………………………………………………..
X……………………………………..
tests/test_utils.py..s…………………………………………….
========= 217 passed, 1 skipped, 1 xpassed in 25.75 seconds ===================
Другие популярные инструменты
Инструменты для тестирования, перечисленные здесь, используются не так часто, но все еще достаточно популярны.
pytest ( http://pytest.org/latest/) — это нешаблонная альтернатива модуля стандартной библиотеки Python. Это означает, что для него не требуется создавать временные платформы для тестовых случаев и, возможно, даже не нужны методы установки и очистки. Для установки запустите команду pip в обычном режиме:
$ pip install pytest
Несмотря на то что инструмент тестирования имеет множество возможностей и его можно расширять, синтаксис остается довольно простым. Создать набор тестов так же просто, как и написать модуль с несколькими функциями:
# содержимое файла test_sample.py
def func(x):
····return x + 1
def test_answer():
····assert func(3) == 5
После этого вам лишь нужно вызвать команду py.test. Сравните это с работой, которая потребуется для создания эквивалентной функциональности с помощью модуля unittest:
$ py.test
=========================== test session starts ============================
platform darwin — Python 2.7.1 — pytest-2.2.1
collecting… collected 1 items
test_sample.py F
================================= FAILURES =================================
_______________________________ test_answer ________________________________
····def test_answer():
> ····assert func(3) == 5
E ····assert 4 == 5
E ····+ where 4 = func(3)
test_sample.py:5: AssertionError
========================= 1 failed in 0.02 seconds =========================
Nose ( http://readthedocs.org/docs/nose/en/latest/) расширяет unittest для того, чтобы упростить тестирование:
$ pip install nose
Предоставляет возможность автоматически обнаруживать тесты, чтобы сэкономить ваше время и избавить от необходимости создавать наборы тестов вручную. Предлагает множество надстроек для дополнительной функциональности вроде совместимого с xUnit вывода тестов, отчетов о покрытии, а также выбора тестов.
tox ( http://testrun.org/tox/latest/) — инструмент для автоматизирования управления средами тестирования и для тестирования в разных конфигурациях интерпретатора:
$ pip install tox
tox позволяет сконфигурировать сложные матрицы тестов с большим количеством параметров с помощью конфигурационного файла, похожего на INI-файлы.
Если вы не можете контролировать свою версию Python, но хотите использовать эти инструменты тестирования, предлагаем вам несколько вариантов.
unittest2.Это обратный порт модуля unittest ( http://pypi.python.org/pypi/unittest2) для версии Python 2.7, который имеет усовершенствованный API и лучшие выражения относительно тех, что были доступны в предыдущих версиях Python.
Если вы используете Python 2.6 или ниже (например, если вы работаете в крупном банке или компании Fortune 500), можете установить его с помощью команды pip:
$ pip install unittest2
Вы можете захотеть импортировать модуль под именем unittest, чтобы вам было проще портировать код на новые версии модуля в будущем:
import unittest2 as unittest
class MyTest(unittest.TestCase):
····…
Таким образом, если вы когда-нибудь перейдете на новую версию Python и вам больше не потребуется модуль unittest2, вы сможете изменить выражение импорта, не меняя остальной код.
Mock.Если вам понравилось то, что вы прочитали в пункте «Mock (в модуле unittest)» раздела «Основы тестирования» выше, но вы работаете с Python в версии ниже 3.3, вы все еще можете использовать unittest.mock, импортировав его как отдельную библиотеку:
$ pip install mock
fixture.Предоставляет инструменты, которые позволяют проще настраивать и очищать бэкенды баз данных для тестирования ( http://farmdev.com/projects/fixture/). Он может загружать фальшивые наборы данных для использования в SQLAlchemy, SQLObject, Google Datastore, Django ORM и Storm. Существуют и его новые версии, но его тестировали только для версий Python 2.4–2.6.
Lettuce и Behave — это пакеты для выполнения разработки через реализацию поведения (behavior-driven development, BDD) в Python. BDD — процесс, который появился на основе TDD в начале 2000-х годов для того, чтобы заменить слово «тест» в TDD на слово «поведение» (дабы преодолеть проблемы, возникающие у новичков при освоении TDD). Это название появилось благодаря Дэну Норту (Dan North) в 2003-м и было представлено миру наряду с инструментом JBehave для Java в статье 2006 года в журнале Better Socware (представляла собой отредактированную статью из блога Дэна Норта Introducing BDD по адресу http://dannorth.net/introducing-bdd).
Читать дальшеИнтервал:
Закладка: