Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

void update_data_for_widget(widget_id w,widget_data& data); ← (1)

void oops_again(widget_id w) {

widget_data data;

std::thread t(update_data_for_widget, w, data); ← (2)

display_status();

t.join();

process_widget_data(data); ← (3)

}

Здесь update_data_for_widget (1)ожидает, что второй параметр будет передан по ссылке, но конструктор std::thread (2)не знает об этом: он не в курсе того, каковы типы аргументов, ожидаемых функцией, и просто слепо копирует переданные значения. Поэтому функции update_data_for_widgetбудет передана ссылка на внутреннюю копию data, а не на сам объект data. Следовательно, по завершении потока от обновлений ничего не останется, так как внутренние копии переданных аргументов уничтожаются, и функция process_widget_dataполучит не обновленные данные, а исходный объект data (3). Для читателя, знакомого с механизмом std::bind, решение очевидно: нужно обернуть аргументы, которые должны быть ссылками, объектом std::ref. В данном случае, если мы напишем

std::thread t(update_data_for_widget, w, std::ref(data));

то функции update_data_for_widgetбудет правильно передана ссылка на data, а не копия data.

Если вы знакомы с std::bind, то семантика передачи параметров вряд ли вызовет удивление, потому что работа конструктора std::threadи функции std::bindопределяется в терминах одного и того же механизма. Это, в частности, означает, что в качестве функции можно передавать указатель на функцию-член при условии, что в первом аргументе передается указатель на правильный объект:

class X {

public:

void do_lengthy_work();

};

X my_x;

std::thread t(&X::do_lengthy_work, &my_x); ← (1)

Здесь мы вызываем my_x.do_lengthy_work()в новом потоке, поскольку в качестве указателя на объект передан адрес my_x (1). Так вызванной функции-члену можно передавать и аргументы: третий аргумент конструктора std::thread станет первым аргументом функции-члена и т.д.

Еще один интересный сценарий возникает, когда передаваемые аргументы нельзя копировать, а можно только перемещать : данные, хранившиеся в одном объекте, переносятся в другой, а исходный объект остается «пустым». Примером может служить класс std::unique_ptr, который обеспечивает автоматическое управление памятью для динамически выделенных объектов. В каждый момент времени на данный объект может указывать только один экземпляр std::unique_ptr, и, когда этот экземпляр уничтожается, объект, на который он указывает, удаляется. Перемещающий конструктор и перемещающий оператор присваивания позволяют передавать владение объектом от одного экземпляра std::unique_ptrдругому (о семантике перемещения см. приложение А, раздел А.1.1). После такой передачи в исходном экземпляре остается указатель NULL. Подобное перемещение значений дает возможность передавать такие объекты в качестве параметров функций или возвращать из функций. Если исходный объект временный, то перемещение производится автоматически, а если это именованное значение, то передачу владения следует запрашивать явно, вызывая функцию std::move(). В примере ниже показано применение функции std::moveдля передачи владения динамическим объектом потоку:

void process_big_object(std::unique_ptr);

std::unique_ptr p(new big_object);

p->prepare_data(42);

std::thread t(process_big_object,std::move(p));

Поскольку мы указали при вызове конструктора std::threadфункцию std::move, то владение объектом big_objectпередается объекту во внутренней памяти вновь созданного потока, а затем функции process_big_object.

В стандартной библиотеке Thread Library есть несколько классов с такой же семантикой владения, как у std::unique_ptr, и std::thread— один из них. Правда, экземпляры std::threadне владеют динамическими объектами, как std::unique_ptr, зато они владеют ресурсами: каждый экземпляр отвечает за управление потоком выполнения. Это владение можно передавать от одного экземпляра другому, поскольку экземпляры std::thread перемещаемые , хотя и не копируемые . Тем самым гарантируется, что в каждый момент времени с данным потоком будет связан только один объект, но в то же время программист вправе передавать владение от одного объекта другому

2.3. Передача владения потоком

Предположим, что требуется написать функцию для создания потока, который должен работать в фоновом режиме, но при этом мы не хотим ждать его завершения, а хотим, чтобы владение новым потоком было передано вызывающей функции. Или требуется сделать обратное — создать поток и передать владение им некоторой функции, которая будет ждать его завершения. В обоих случаях требуется передать владение из одного места в другое.

Именно здесь и оказывается полезной поддержка классом std::threadсемантики перемещения. В предыдущем разделе отмечалось, что в стандартной библиотеке С++ есть много типов, владеющих ресурсами, например std::ifstreamи std::unique_ptr, которые являются перемещаемыми , но не копируемыми, и один из них — std::thread. Это означает, что владение потоком можно передавать от одного экземпляра std::threadдругому, как показано в примере ниже. В нем создается два потока выполнения, владение которыми передается между тремя объектами std::thread: t1, t2и t3.

void some_function();

void some_other_function();

std::thread t1(some_function); ← (1)

std::thread t2 = std::move(t1); ← (2)

t1 = std::thread(some_other_function); ← (3)

std::thread t3; ← (4)

t3 = std::move(t2); ← (5)

t1 = std::move(t3); ← (6) Это присваивание приводит

; к аварийному завершению программы

Сначала создастся новый поток (1)и связывается с объектом t1. Затем владение явно передается объекту t2в момент его конструирования путем вызова std::move() (2). В этот момент с t1уже не связан никакой поток выполнения: поток, в котором исполняется функция some_function, теперь связан с t2.

Далее создается еще один поток, который связывается с временным объектом типа std::thread (3). Для последующей передачи владения объекту t1уже не требуется явный вызов std::move(), так как владельцем является временный объект, а передача владения от временных объектов производится автоматически и неявно.

Объект t3конструируется по умолчанию (4), а это означает, что в момент создания с ним не связывается никакой поток. Владение потоком, который в данный момент связан с t2, передастся объекту t3 (5), опять-таки путем явного обращения к std::move(), поскольку t2— именованный объект. После всех этих перемещений t1оказывается связан с потоком, исполняющим функцию some_other_function, t2не связан ни с каким потоком, a t3связан с потоком, исполняющим функцию some_function.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x