Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.1. Базовые операции управления потоками

В каждой программе на С++ имеется по меньшей мере один поток, запускаемый средой исполнения С++: тот, в котором исполняется функция main(). Затем программа может запускать дополнительные потоки с другими функциями в качестве точки входа. Эти потоки работают параллельно друг с другом и с начальным потоком. Мы знаем, что программа завершает работу, когда main()возвращает управление; точно так же, при возврате из точки входа в поток этот поток завершается. Ниже мы увидим, что, имея объект std::threadдля некоторого потока, мы можем дождаться завершения этого потока, но сначала посмотрим, как потоки запускаются.

2.1.1. Запуск потока

В главе 1 мы видели, что для запуска потока следует сконструировать объект std::thread, который определяет, какая задача будет исполняться в потоке. В простейшем случае задача представляет собой обычную функцию без параметров, возвращающую void. Эта функция работает в своем потоке, пока не вернет управление, и в этом момент поток завершается. С другой стороны, в роли задачи может выступать объект-функция, который принимает дополнительные параметры и выполняет ряд независимых операций, информацию о которых получает во время работы от той или иной системы передачи сообщений. И останавливается такой поток, когда получит соответствующий сигнал, опять же с помощью системы передачи сообщений. Вне зависимости от того, что поток будет делать и откуда он запускается, сам запуск потока в стандартном С++ всегда сводится к конструированию объекта std::thread:

void do_some_work();

std::thread my_thread(do_some_work);

Как видите, все просто. Разумеется, как и во многих других случаях в стандартной библиотеке С++, класс std::threadработает с любым типом, допускающим вызов ( Callable ), поэтому конструктору std::threadможно передать экземпляр класса, в котором определен оператор вызова:

class background_task {

public:

void operator()() const {

do_something();

do_something_else();

}

};

background_task f;

std::thread my_thread(f);

В данном случае переданный объект-функция копируется в память, принадлежащую только что созданному потоку выполнения, и оттуда вызывается. Поэтому необходимо, чтобы с точки зрения поведения копия была эквивалентна оригиналу, иначе можно получить неожиданный результат.

При передаче объекта-функции конструктору потока нужно избегать феномена «самого досадного разбора в С++» (C++'s most vexing parse). Синтаксически передача конструктору временного объекта вместо именованной переменной выглядит так же, как объявление функции, и именно так компилятор и интерпретирует эту конструкцию. Например, в предложении

std::thread my_thread(background_task());

объявлена функция my_thread, принимающая единственный параметр (типа указателя на функцию без параметров, которая возвращает объект background_task) и возвращающая объект std::thread. Никакой новый поток здесь не запускается. Решить эту проблему можно тремя способами: поименовать объект-функцию, как в примере выше; добавить лишнюю пару скобок или воспользоваться новым универсальным синтаксисом инициализации, например:

std::thread my_thread( (background_task() )); ← (1)

std::thread my_thread {background_task() }; ← (2)

В случае (1)наличие дополнительных скобок не дает компилятору интерпретировать конструкцию как объявление функции, так что действительно объявляется переменная my_threadтипа std::thread. В случае (2)использован новый универсальный синтаксис инициализации с фигурными, а не круглыми скобками, он тоже приводит к объявлению переменной.

В стандарте С++11 имеется новый тип допускающего вызов объекта, в котором описанная проблема не возникает, — лямбда-выражение . Этот механизм позволяет написать локальную функцию, которая может захватывать некоторые локальные переменные, из-за чего передавать дополнительные аргументы просто не нужно (см. раздел 2.2). Подробная информация о лямбда-выражениях приведена в разделе А.5 приложения А. С помощью лямбда-выражений предыдущий пример можно записать в таком виде:

std::thread my_thread([](

do_something();

do_something_else();

});

После запуска потока необходимо явно решить, ждать его завершения (присоединившись к нему, см. раздел 2.1.2) или предоставить собственной судьбе (отсоединив его, см. раздел 2.1.3). Если это решение не будет принято к моменту уничтожения объекта std::thread, то программа завершится (деструктор std::threadвызовет функцию std::terminate()). Поэтому вы обязаны гарантировать, что поток корректно присоединен либо отсоединен, даже если возможны исключения. Соответствующая техника программирования описана в разделе 2.1.3. Отметим, что это решение следует принять именно до уничтожения объекта std::thread, к самому потоку оно не имеет отношения. Поток вполне может завершиться задолго до того, как программа присоединится к нему или отсоединит его. А отсоединенный поток может продолжать работу и после уничтожения объекта std::thread.

Если вы не хотите дожидаться завершения потока, то должны гарантировать, что данные, к которым поток обращается, остаются действительными до тех пор, пока они могут ему понадобиться. Эта проблема не нова даже в однопоточной программа доступ к уже уничтоженному объекту считается неопределенным поведением, но при использовании потоков есть больше шансов столкнуться с проблемами, обусловленными временем жизни.

Например, такая проблема возникает, если функция потока хранит указатели или ссылки на локальные переменные, и поток еще не завершился, когда произошел выход из области видимости, где эти переменные определены. Соответствующий пример приведен в листинге 2.1.

Листинг 2.1.Функция возвращает управление, когда поток имеет доступ к определенным в ней локальным переменным

struct func {

int& i;

func(int& i_) : i(i_){}

void operator() () {

for(unsigned j = 0; j < 1000000; ++j) {

do_something(i); ←┐ Потенциальный доступ

} (1) к висячей ссылке

}

};

void oops() {

int some_local_state = 0; (2) He ждем завершения

func my_func(some_local_state); ←┘ потока

std::thread my_thread(my_func); ←┐ Новый поток, возможно,

my_thread.detach(); (3) еще работает

}

В данном случае вполне возможно, что новый поток, ассоциированный с объектом my_thread, будет еще работать, когда функция oopsвернет управление (2), поскольку мы явно решили не дожидаться его завершения, вызвав detach() (3). А если поток действительно работает, то при следующем вызове do_something(i) (1)произойдет обращение к уже уничтоженной переменной. Точно так же происходит в обычном однопоточном коде — сохранять указатель или ссылку на локальную переменную после выхода из функции всегда плохо, — но в многопоточном коде такую ошибку сделать проще, потому что не сразу видно, что произошло.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x