Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Название:Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-448-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.
Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Не удовлетворившись использованием платформенно-зависимых С API для работы с многопоточностью, программисты на С++ пожелали, чтобы в используемых ими библиотеках классов были реализованы объектно-ориентированные средства для написания многопоточных программ. В различные программные каркасы типа MFC и в универсальные библиотеки на С++ типа Boost и АСЕ были включены наборы классов С++, которые обертывали платформенно-зависимые API и предоставляли высокоуровневые средства для работы с многопоточностью, призванные упростить программирование. Детали реализации в этих библиотеках существенно различаются, особенно в части запуска новых потоков, но общая структура классов очень похожа. В частности, во многих библиотеках классов С++ применяется крайне полезная идиома захват ресурса есть инициализация (RAII) , которая материализуется в виде блокировок, гарантирующих освобождение мьютекса при выходе из соответствующей области видимости.
Во многих случаях поддержка многопоточности в имеющихся компиляторах С++ вкупе с доступностью платформенно-зависимых API и платформенно-независимых библиотек классов типа Boost и АСЕ оказывается достаточно прочным основанием, на котором можно писать многопоточные программы. В результате уже написаны многопоточные приложения на С++, содержащие миллионы строк кода. Но коль скоро прямой поддержки в стандарте нет, бывают случаи, когда отсутствие модели памяти, учитывающей многопоточность, приводит к проблемам. Особенно часто с этим сталкиваются разработчики, пытающиеся увеличить производительность за счет использования особенностей конкретного процессора, а также те, кто пишет кросс-платформенный код, который должен работать независимо от различий между компиляторами на разных платформах.
1.3.2. Поддержка параллелизма в новом стандарте
Все изменилось с выходом стандарта С++11. Мало того что в нем определена совершенно новая модель памяти с поддержкой многопоточности, так еще и в стандартную библиотеку С++ включены классы для управления потоками (глава 2), защиты разделяемых данных (глава 3), синхронизации операций между потоками (глава 4) и низкоуровневых атомарных операций (глава 5).
В основу новой библиотеки многопоточности для С++ положен опыт, накопленный за время использования вышеупомянутых библиотек классов. В частности, моделью новой библиотеки стала библиотека Boost Thread Library, из которой заимствованы имена и структура многих классов. Эволюция нового стандарта была двунаправленным процессом, и сама библиотека Boost Thread Library во многих отношениях изменилась, чтобы лучше соответствовать стандарту. Поэтому пользователи Boost, переходящие на новый стандарт, будут чувствовать себя очень комфортно.
Поддержка параллелизма — лишь одна из новаций в стандарте С++. Как уже отмечалось в начале главы, в сам язык тоже внесено много изменений, призванных упростить жизнь программистам. Хотя, вообще говоря, сами по себе они не являются предметом настоящей книги, некоторые оказывают прямое влияние на библиотеку многопоточности и способы ее использования. В приложении А содержится краткое введение в эти языковые средства.
Прямая языковая поддержка атомарных операций позволяет писать эффективный код с четко определенной семантикой, не прибегая к языку ассемблера для конкретной платформы. Это манна небесная для тех, кто пытается создавать эффективный и переносимый код, — мало того что компилятор берет на себя заботу об особенностях платформы, так еще и оптимизатор можно написать так, что он будет учитывать семантику операций и, стало быть, лучше оптимизировать программу в целом.
1.3.3. Эффективность библиотеки многопоточности для С++
Одна из проблем, с которыми сталкиваются разработчики высокопроизводительных приложений при использовании языка С++ вообще и классов, обертывающих низкоуровневые средства, типа тех, что включены в стандартную библиотеку С++ Thread Library, в частности, — это эффективность. Если вас интересует достижение максимальной производительности, то необходимо понимать, что использование любых высокоуровневых механизмов вместо обертываемых ими низкоуровневых средств влечет за собой некоторые издержки. Эти издержки называются платой за абстрагирование .
Комитет по стандартизации С++ прекрасно донимал это, когда проектировал стандартную библиотеку С++ вообще и стандартную библиотеку многопоточности для С++ в частности. Среди целей проектирования была и такая: выигрыш от использования низкоуровневых средств по сравнению с высокоуровневой оберткой (если такая предоставляется) должен быть ничтожен или отсутствовать вовсе. Поэтому библиотека спроектирована так, чтобы ее можно было эффективно реализовать (с очень небольшой платой за абстрагирование) на большинстве популярных платформ.
Комитет по стандартизации С++ поставил и другую цель — обеспечить достаточное количество низкоуровневых средств для желающих работать на уровне «железа», чтобы выдавить из него все, что возможно. Поэтому наряду с новой моделью памяти включена полная библиотека атомарных операций для прямого управления на уровне битов и байтов, а также средства межпоточной синхронизации и обеспечения видимости любых изменений. Атомарные типы и соответствующие операции теперь можно использовать во многих местах, где раньше разработчики были вынуждены опускаться на уровень языка ассемблера для конкретной платформы. Таким образом, код с применением новых стандартных типов и операций получается более переносимым и удобным для сопровождения.
Стандартная библиотека С++ также предлагает высокоуровневые абстракции и средства, позволяющие писать многопоточный код проще и с меньшим количеством ошибок. Некоторые из них несколько снижают производительность из-за необходимости выполнять дополнительный код. Однако эти накладные расходы не обязательно означают высокую плату за абстрагирование: в общем случае цена не выше, чем пришлось бы заплатить при написании эквивалентной функциональности вручную, и к тому же компилятор волне может встроить значительную часть дополнительного кода.
В некоторых случаях высокоуровневые средства обеспечивают большую функциональность, чем необходимо для конкретной задачи. Как правило, это не страшно: вы не платите за то, чем не пользуетесь. Редко, но бывает, что избыточная функциональность негативно сказывается на производительности других частей программы. Если ее стоимость слишком высока, а производительность имеет первостепенное значение, то, быть может, имеет смысл вручную запрограммировать необходимую функциональность, пользуясь низкоуровневыми средствами. Но в подавляющем большинстве случаев дополнительная сложность и возможность внести ошибки намного перевешивают небольшой выигрыш в производительности. Даже если профилирование показывает, что средства стандартной библиотеки С++ действительно являются узким местом, не исключено, что проблема в неудачном дизайне приложения, а не в плохой реализации библиотеки. Например, когда слишком много потоков конкурируют за один мьютекс, производительность упадет — и сильно. Но лучше не пытаться чуть-чуть ускорить операции с мьютексами, а изменить структуру приложения, так чтобы снизить конкуренцию. Вопрос о том, как проектировать приложения, чтобы уменьшить конкуренцию, обсуждается в главе 8.
Читать дальшеИнтервал:
Закладка: