Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Название:Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-448-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.
Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 1.1. Два подхода к параллелизму: параллельное выполнение на двухъядерном компьютере и переключение задач на одноядерном
Хотя аппаратная реализация параллелизма наиболее наглядно проявляется в многопроцессорных и многоядерных компьютерах, существуют процессоры, способные выполнять несколько потоков на одном ядре. В действительности существенным фактором является количество аппаратных потоков характеристика числа независимых задач, исполняемых оборудованием по-настоящему одновременно. И наоборот, в системе с истинным параллелизмом количество задач может превышать число ядер, тогда будет применяться механизм переключения задач. Например, в типичном настольном компьютере может быть запущено несколько сотен задач, исполняемых в фоновом режиме даже тогда, когда компьютер по видимости ничего не делает. Именно за счет переключения эти задачи могут работать параллельно, что и позволяет одновременно открывать текстовый процессор, компилятор, редактор и веб-браузер (да и вообще любую комбинацию приложений). На рис. 1.2 показано переключение четырех задач на двухъядерной машине, опять-таки в идеализированном случае, когда задачи разбиты на этапы одинаковой продолжительности. На практике существует много причин, из-за которых разбиение неравномерно и планировщик выделяет процессор каждой задаче не столь регулярно. Некоторые из них будут рассмотрены в главе 8 при обсуждении факторов, влияющих на производительность параллельных программ.

Рис. 1.2. Переключение задач на двухъядерном компьютере
Все рассматриваемые в этой книге приемы, функции и классы применимы вне зависимости оттого, исполняется приложение на машине с одноядерным процессором или с несколькими многоядерными процессорами. Не имеет значения, как реализован параллелизм: с помощью переключения задач или аппаратно. Однако же понятно, что способ использования параллелизма в приложении вполне может зависеть от располагаемого оборудования. Эта тема обсуждается в главе 8 при рассмотрении вопросов проектирования параллельного кода на С++.
1.1.2. Подходы к организации параллелизма
Представьте себе пару программистов, работающих над одним проектом. Если они сидят в разных кабинетах, то могут мирно трудиться, не мешая друг другу, причем у каждого имеется свой комплект документации. Но общение при этом затруднено вместо того чтобы просто обернуться и обменяться парой слов, приходится звонить по телефону, писать письма или даже встать и дойти до коллеги. К тому же, содержание двух кабинетов сопряжено с издержками, да и на несколько комплектов документации надо будет потратиться.
А теперь представьте, что всех разработчиков собрали в одной комнате. У них появилась возможность обсуждать между собой проект приложения, рисовать на бумаге или на доске диаграммы, обмениваться мыслями. Содержать придется только один офис и одного комплекта документации вполне хватит. Но есть и минусы теперь им труднее сконцентрироваться и могут возникать проблемы с общим доступом к ресурсам («Ну куда опять запропастилось это справочное руководство?»).
Эти два способа организации труда разработчиков иллюстрируют два основных подхода к параллелизму. Разработчик это модель потока, а кабинет модель процесса В первом случае имеется несколько однопоточных процессов (у каждого разработчика свой кабинет), во втором несколько потоков в одном процессе (два разработчика в одном кабинете). Разумеется, возможны произвольные комбинации: может быть несколько процессов, многопоточных и однопоточных, но принцип остается неизменным. А теперь поговорим немного о том, как эти два подхода к параллелизму применяются в приложениях.
Первый способ распараллелить приложение — разбить его на несколько однопоточных одновременно исполняемых процессов. Именно так вы и поступаете, запуская вместе браузер и текстовый процессор. Затем эти отдельные процессы могут обмениваться сообщениями, применяя стандартные каналы межпроцессной коммуникации (сигналы, сокеты, файлы, конвейеры и т.д.), как показано на рис. 1.3. Недостаток такой организации связи между процессами в его сложности, медленности, а иногда том и другом вместе. Дело в том, что операционная система должна обеспечить защиту процессов, так чтобы ни один не мог случайно изменить данные, принадлежащие другому. Есть и еще один недостаток — неустранимые накладные расходы на запуск нескольких процессов: для запуска процесса требуется время, ОС должна выделить внутренние ресурсы для управления процессом и т.д.

Рис. 1.3. Коммуникация между двумя параллельно работающими процессами
Конечно, есть и плюсы. Благодаря надежной защите процессов, обеспечиваемой операционной системой, и высокоуровневым механизмам коммуникации написать безопасный параллельный код проще, когда имеешь дело с процессами, а не с потоками. Например, в среде исполнения, создаваемой языком программирования Erlang, в качестве фундаментального механизма параллелизма используются процессы, и это дает отличный эффект.
У применения процессов для реализации параллелизма есть и еще одно достоинство — процессы можно запускать на разных машинах, объединенных сетью. Хотя затраты на коммуникацию при этом возрастают, по в хорошо спроектированной системе такой способ повышения степени параллелизма может оказаться очень эффективным, и общая производительность увеличится.
Альтернативный подход к организации параллелизма — запуск нескольких потоков в одном процессе. Потоки можно считать облегченными процессами — каждый поток работает независимо от всех остальных, и все потоки могут выполнять разные последовательности команд. Однако все принадлежащие процессу потоки разделяют общее адресное пространство и имеют прямой доступ к большей части данных — глобальные переменные остаются глобальными, указатели и ссылки на объекты можно передавать из одного потока в другой. Для процессов тоже можно организовать доступ к разделяемой памяти, но это и сделать сложнее, и управлять не так просто, потому что адреса одного и того же элемента данных в разных процессах могут оказаться разными. На рис. 1.4 показано, как два потока в одном процессе обмениваются данными через разделяемую память.
Читать дальшеИнтервал:
Закладка: