Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

data.promise.set_value(true); ← (6)

}

}

}

}

Функция process_connections()повторяет цикл, пока done()возвращает true (1). На каждой итерации поочередно проверяется каждое соединение (2); если есть входящие данные, они читаются (3), а если в очереди имеются исходящие данные, они отсылаются (5). При этом предполагается, что в каждом входящем пакете хранится некоторый идентификатор и полезная нагрузка, содержащая собственно данные. Идентификатору сопоставляется объект std::promise(возможно, путем поиска в ассоциативном контейнере) (4), значением которого является полезная нагрузка пакета. Исходящие пакеты просто извлекаются из очереди отправки и передаются но соединению. После завершения передачи в обещание, ассоциированное с исходящими данными, записывается значение true, обозначающее успех (6). Насколько хорошо эта схема ложится на фактический сетевой протокол, зависит от самого протокола; в конкретном случае схема обещание/будущий результат может и не подойти, хотя структурно она аналогична поддержке асинхронного ввода/вывода в некоторых операционных системах.

В коде выше мы полностью проигнорировали возможные исключения. Хотя мир, в котором всё всегда работает правильно, был бы прекрасен, действительность не так радужна. Переполняются диски, не находятся искомые данные, отказывает сеть, «падает» база данных — всякое бывает. Если бы операция выполнялась в том потоке, которому нужен результат, программа могла бы просто сообщить об ошибке с помощью исключения. Но было бы неоправданным ограничением требовать, чтобы всё работало правильно только потому, что мы захотели воспользоваться классами std::packaged_taskили std::promise.

Поэтому в стандартной библиотеке С++ имеется корректный способ учесть возникновение исключений в таком контексте и сохранить их как часть ассоциированного результата.

4.2.4. Сохранение исключения в будущем результате

Рассмотрим следующий коротенький фрагмент. Если передать функции square_root()значение -1, то она возбудит исключение, которое увидит вызывающая программа:

double square_root(double x) {

if (x<0) {

throw std::out_of_range("x<0");

}

return sqrt(x);

}

А теперь предположим, что вместо вызова square_root()в текущем потоке

double y = square_root(-1);

мы вызываем ее асинхронно:

std::future f = std::async(square_root,-1);

double y = f.get();

В идеале хотелось бы получить точно такое же поведение: чтобы поток, вызывающий f.get(), мог увидеть не только нормальное значение y, но и исключение — как в однопоточной программе.

Что ж, именно так на самом деле и происходит: если функция, вызванная через std::async, возбуждает исключение, то это исключение сохраняется в будущем результате вместо значения, а когда будущий результат оказывается готовым , вызов get()повторно возбуждает сохраненное исключение. (Примечание: стандарт ничего не говорит о том, возбуждается ли исходное исключение или его копия; различные компиляторы и библиотеки вправе решать этот вопрос по-разному.) То же самое происходит, когда функция обернута объектом std::packaged_task, — если при вызове задачи обернутая функция возбуждает исключение, то объект исключения сохраняется в будущем результате вместо значения, и это исключение повторно возбуждается при обращении к get().

Разумеется, std::promiseобеспечивает те же возможности в случае явного вызова функции. Чтобы сохранить исключение вместо значения, следует вызвать функцию-член set_exception(), а не set_value(). Обычно это делается в блоке catch:

extern std::promise some_promise;

try {

some_promise.set_value(calculate_value());

} catch (...) {

some_promise.set_exception(std::current_exception());

}

Здесь мы воспользовались функцией std::current_exception(), которая возвращает последнее возбужденное исключение, но могли вызвать std::copy_exception(), чтобы поместить в объект-обещание новое исключение, которое никем не возбуждалось:

some_promise.set_exception(

std::copy_exception(std::logic_error("foo"));

Если тип исключения заранее известен, то это решение гораздо чище, чем использование блока try/catch; мы не только упрощаем код, но и оставляем компилятору возможности для его оптимизации.

Есть еще один способ сохранить исключение в будущем результате: уничтожить ассоциированный с ним объект std::promiseили std::packaged_task, не вызывая функцию установки значения в случае обещания или не обратившись к упакованной задаче. В любом случае деструктор std::promiseили std::packaged_taskсохранит в ассоциированном состоянии исключение типа std::future_error, в котором код ошибки равен std::future_errc::broken_promise, если только будущий результат еще не готов ; создавая объект-будущее, вы даете обещание предоставить значение или исключение, а, уничтожая объект, не задав ни того, ни другого, вы это обещание нарушаете. Если бы компилятор в этом случае не сохранил ничего в будущем результате, то ожидающие потоки могли бы никогда не выйти из состояния ожидания.

До сих пор мы во всех примерах использовали std::future. Однако у этого шаблонного класса есть ограничения, и не в последнюю очередь тот факт, что результата может ожидать только один поток. Если требуется, чтобы одного события ждали несколько потоков, то придётся воспользоваться классом std::shared_future.

4.2.5. Ожидание в нескольких потоках

Хотя класс std::futureсам заботится о синхронизации, необходимой для передачи данных из одного потока в другой, обращения к функциям-членам одного и того же экземпляра std::futureне синхронизированы между собой. Работа с одним объектом std::futureиз нескольких потоков без дополнительной синхронизации может закончиться гонкой за данными и неопределенным поведением. Так и задумано: std::futureмоделирует единоличное владение результатом асинхронного вычисления, и одноразовая природа get()в любом случае делает параллельный доступ бессмысленным — извлечь значение может только один поток, поскольку после первого обращения к get()никакого значения не остается.

Но если дизайн вашей фантастической параллельной программы требует, чтобы одного события могли ждать несколько потоков, то не отчаивайтесь: на этот случай предусмотрен шаблон класса std::shared_future. Если std::futureдопускает только перемещение , чтобы владение можно было передавать от одного экземпляра другому, но в каждый момент времени на асинхронный результат ссылался лишь один экземпляр, то экземпляры std::shared_futureдопускают и копирование , то есть на одно и то же ассоциированное состояние могут ссылать несколько объектов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x