Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Альтернативный сценарий — когда несколько потоков ожидают одного события, и отреагировать должны все. Так бывает, например, когда инициализируются разделяемые данные, и все работающие с ними потоки должны ждать, пока инициализация завершится (хотя для этого случая существуют более подходящие механизмы, см. раздел 3.3.1 главы 3), или когда потоки должны ждать обновления разделяемых данных, например, в случае периодической повторной инициализации. В таких ситуациях поток, отвечающий за подготовку данных, может вызвать функцию-член notify_all()условной переменной вместо notify_one(). Эта функция извещает все потоки, ожидающие внутри функции wait(), о том, что они должны проверить ожидаемое условие.

Если ожидающий поток собирается ждать условия только один раз, то есть после того как оно станет истинным, он не вернется к ожиданию той же условной переменной, то лучше применить другой механизм синхронизации. В особенности это относится к случаю, когда ожидаемое условие — доступность каких-то данных. Для такого сценария больше подходят так называемые будущие результаты (future).

4.2. Ожидание одноразовых событий с помощью механизма будущих результатов

Предположим, вы летите самолетом в отпуск за границу. Вы приехали в аэропорт, прошли регистрацию и прочие процедуры, но должны ждать объявления о посадке — быть может, несколько часов. Можно, конечно, найти себе занятие — например, почитать книжку, побродить в Интернете, поесть в кафе за бешеные деньги, но суть от этого не меняется: вы ждете сигнала о том, что началась посадка в самолет. И есть еще одна особенность — данный рейс вылетает всего один раз; в следующий отпуск вы будете ждать посадки на другой рейс.

В стандартной библиотеке С++ такие одноразовые события моделируются с помощью будущего результата . Если поток должен ждать некоего одноразового события, то он каким-то образом получает представляющий его объект-будущее. Затем поток может периодически в течение очень короткого времени ожидать этот объект-будущее, проверяя, произошло ли событие (посмотреть на табло вылетов), а между проверками заниматься другим делом (вкушать в кафе аэропортовскую пищу по несуразным ценам). Можно поступить и иначе — выполнять другую работу до тех пор, пока не наступит момент, когда без наступления ожидаемого события двигаться дальше невозможно, и вот тогда ждать готовности будущего результата. С будущим результатом могут быть ассоциированы какие-то данные (например, номер выхода в объявлении на посадку), но это необязательно. После того как событие произошло (то есть будущий результат готов ), сбросить объект-будущее в исходное состояние уже невозможно.

В стандартной библиотеке С++ есть две разновидности будущих результатов, реализованные в форме двух шаблонов классов, которые объявлены в заголовке : уникальные будущие результаты ( std::future<>) и разделяемые будущие результаты ( std::shared_future<>). Эти классы устроены по образцу std::unique_ptrи std::shared_ptr. На одно событие может ссылаться только один экземпляр std::future, но несколько экземпляров std::shared_future. В последнем случае все экземпляры оказываются готовы одновременно и могут обращаться к ассоциированным с событием данным. Именно из-за ассоциированных данных будущие результаты представлены шаблонами, а не обычными классами; точно так же шаблоны std::unique_ptrи std::shared_ptrпараметризованы типом ассоциированных данных. Если ассоциированных данных нет, то следует использовать специализации шаблонов std::futureи std::shared_future. Хотя будущие результаты используются как механизм межпоточной коммуникации, сами по себе они не обеспечивают синхронизацию доступа. Если несколько потоков обращаются к единственному объекту-будущему, то они должны защитить доступ с помощью мьютекса или какого-либо другого механизма синхронизации, как описано в главе 3. Однако, как будет показано в разделе 4.2.5, каждый из нескольких потоков может работать с собственной копией std::shared_future<>безо всякой синхронизации, даже если все они ссылаются на один и тот же асинхронно получаемый результат.

Самое простое одноразовое событие — это результат вычисления, выполненного в фоновом режиме. В главе 2 мы видели, что класс std::threadне предоставляет средств для возврата вычисленного значения, и я обещал вернуться к этому вопросу в главе 4. Исполняю обещание.

4.2.1. Возврат значения из фоновой задачи

Допустим, вы начали какое-то длительное вычисление, которое в конечном итоге должно дать полезный результат, но пока без него можно обойтись. Быть может, вы нашли способ получить ответ на «Главный возрос жизни, Вселенной и всего на свете» из книги Дугласа Адамса [7] В книге «Путеводитель для путешествующих автостопом по галактике» был построен компьютер Deep Thought, который должен был найти «ответ на главный вопрос жизни, Вселенной и всего на свете». Оказалось, что ответ на вопрос — 42. . Для вычисления можно запустить новый поток, но придётся самостоятельно позаботиться о передаче в основную программу результата, потому что в классе std::threadтакой механизм не предусмотрен. Тут-то и приходит на помощь шаблон функции std::async(также объявленный в заголовке ).

Функция s td::asyncпозволяет запустить асинхронную задачу , результат которой прямо сейчас не нужен. Но вместо объекта std::threadона возвращает объект std::future, который будет содержать возвращенное значение, когда оно станет доступно. Когда программе понадобится значение, она вызовет функцию-член get()объекта-будущего, и тогда поток будет приостановлен до готовности будущего результата, после чего вернет значение. В листинге ниже оказан простой пример.

Листинг 4.6.Использование std::futureдля получения результата асинхронной задачи

#include

#include

int find_the_answer_to_ltuae();

void do_other_stuff();

int main() {

std::future the_answer =

std::async(find_the_answer_to_ltuae);

do_other_stuff();

std::cout << "Ответ равен " << the_answer.get() << std::endl;

}

Шаблон std::asyncпозволяет передать функции дополнительные параметры, точно так же, как std::thread. Если первым аргументом является указатель на функцию-член, то второй аргумент должен содержать объект, от имени которого эта функция-член вызывается (сам объект, указатель на него или обертывающий его std::ref), а все последующие аргументы передаются без изменения функции-члену. В противном случае второй и последующие аргументы передаются функции или допускающему вызов объекту, заданному в первом аргументе. Как и в std::thread, если аргументы представляют собой r -значения, то создаются их копии посредством перемещения оригинала. Это позволяет использовать в качестве объекта-функции и аргументов типы, допускающие только перемещение. Пример см. в листинге ниже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x