Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Название:Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-448-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.
Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
У настоящих последовательных взаимодействующих процессов вообще нет разделяемых данных, а весь обмен информацией производится через очереди сообщений. Но, поскольку в С++ потоки имеют общее адресное пространство, то обеспечить строгое соблюдение этого требования невозможно. Тут-то и приходит на выручку дисциплина: следить за тем, чтобы никакие данные не разделялись между потоками, — обязанность автора приложения или библиотеки. Разумеется, сами очереди сообщений должны разделяться, иначе потоки не смогут взаимодействовать, но детали этого механизма можно вынести в библиотеку. Представьте, что вам нужно написать программу для банкомата. Она должна поддерживать взаимодействие с человеком, который хочет снять деньги, с соответствующим банком, а также управлять оборудованием, которое принимает платёжную карту, выводит на экран сообщения, обрабатывает нажатия клавиш, выдает деньги и возвращает карту.
Чтобы воплотить все это в жизнь, можно было бы разбить код на три независимых потока: один будет управлять оборудованием, второй — реализовывать логику работы банкомата, а третий — обмениваться информацией с банком. Эти потоки могут взаимодействовать между собой посредством передачи сообщений, а не за счет разделения данных. Например, поток, управляющий оборудованием, будет посылать сообщение потоку логики банкомата о том, что человек вставил карту или нажал кнопку. Поток логики будет посылать потоку, управляющему оборудованием, сообщение о том, сколько денег выдать. И так далее.
Смоделировать логику банкомата можно, например, с помощью конечного автомата. В каждом состоянии поток ждет сообщение, которое затем обрабатывает. Это может привести к переходу в новое состояние, после чего цикл продолжится. На рис. 4.3 показаны состояния, присутствующие в простой реализации программы. Здесь система ждет, пока будет вставлена карта. Когда это произойдёт, система ждет, что пользователь введет свой ПИН-код, по одной цифре за раз. Последнюю введенную цифру пользователь может удалить. После того как будет введено нужное количество цифр, система проверяет ПИН-код. Если он введен неправильно, больше делать нечего — клиенту нужно вернуть карту и ждать, пока будет вставлена следующая карта. Если ПИН-код правильный, то система ждет либо отмены транзакции, либо выбора снимаемой суммы. Если пользователь отменил операцию, ему нужно вернуть карту и закончить работу. Если он выбрал сумму, то система ждет подтверждения от банка, а затем либо выдает наличные и возвращает карту, либо выводит сообщение «недостаточно средств на счете» и тоже возвращает карту. Понятно, что реальный банкомат гораздо сложнее, но и этого достаточно для иллюстрации идеи.

Рис. 4.3.Модель простого конечного автомата для банкомата
Спроектировав конечный автомат для реализации логики банкомата, мы можем оформить его в виде класса, в котором каждому состоянию соответствует функция-член. Каждая такая функция ждет поступления одного из допустимых сообщений, обрабатывает его и, возможно, инициирует переход в новое состояние. типы сообщений представлены структурами struct
. В листинге 4.15 приведена часть простой реализации логики банкомата в такой системе — главный цикл и код первого состояния, в котором программа ожидает вставки карты.
Как видите, вся синхронизация, необходимая для передачи сообщений, целиком скрыта в библиотеке (ее простая реализация приведена в приложении С вместе с полным кодом этого примера).
Листинг 4.15.Простая реализация класса, описывающего логику работы банкомата
struct card_inserted {
std::string account;
};
class atm {
messaging::receiver incoming;
messaging::sender bank;
messaging::sender interface_hardware;
void (atm::*state)();
std::string account;
std::string pin;
void waiting_for_card() { ←
(1)
interface_hardware.send(display_enter_card());←
(2)
incoming.wait() ←
(3)
.handle(
[&](card_inserted const& msg) { ←
(4)
account = msg.account;
pin = "";
interface_hardware.send(display_enter_pin());
state = &atm::getting_pin;
}
);
}
void getting_pin();
public:
void run() { ←
(5)
state = &atm::waiting_for_card; ←
(6)
try {
for(;;) {
(this->*state)(); ←
(7)
}
}
catch(messaging::close_queue const&) {}
}
};
Мы уже говорили, что эта реализация неизмеримо проще логики работы реального банкомата, но она все же дает представление о программировании на основе передачи сообщений. Не нужно думать о проблемах параллельности и синхронизации, наша основная забота — понять, какие входные сообщения допустимы в данной точке и какие сообщения посылать в ответ. Конечный автомат, реализующий логику банкомата, работает в одном потоке, а прочие части системы, например интерфейс с банком и с терминалом, — в других потоках. Такой принцип проектирования программ называется моделью акторов — в системе есть несколько акторов (каждый работает в своем потоке), которые посылают друг другу сообщения с просьбой выполнить определённое задание, и никакого разделяемого состояния, помимо передаваемого в составе сообщений, не существует.
Выполнение начинается в функции-члене run()
(5), которая устанавливает начальное состояние waiting_for_card
(6), а затем в цикле вызывает функции-члены, представляющие текущее состояние (каким бы оно ни было) (7). Функции состояния — это просто функции-члены класса atm
. Функция waiting_for_card
(1)тоже не представляет сложности: она посылает сообщение интерфейсу с просьбой вывести сообщение «Вставьте карту» (2), а затем ожидает сообщения, которое могла бы обработать (3). Единственное допустимое в этой точке сообщение — card_inserted
; оно обрабатывается лямбда-функцией (4). Функции handle
можно передать любую функцию или объект-функцию, но в таком простом случае лямбда-функции вполне достаточно. Отметим, что вызов функции handle()
сцеплен с вызовом wait()
; если получено сообщение недопустимого типа, оно отбрасывается, и поток ждет, пока не придёт подходящее сообщение.
Сама лямбда-функция просто запоминает номер карточного счета в переменной-члене, очищает текущий ПИН-код и переходит в состояние «получение ПИН». По завершении обработчика сообщений функция состояния возвращает управление главному циклу, который вызывает функцию следующего состояния (7).
Функция состояния getting_pin
несколько сложнее, потому что может обрабатывать сообщения разных типов, как следует из рис. 4.3. Ниже приведён ее код.
Интервал:
Закладка: