Миран Липовача - Изучай Haskell во имя добра!

Тут можно читать онлайн Миран Липовача - Изучай Haskell во имя добра! - бесплатно ознакомительный отрывок. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Изучай Haskell во имя добра!
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-749-9
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Миран Липовача - Изучай Haskell во имя добра! краткое содержание

Изучай Haskell во имя добра! - описание и краткое содержание, автор Миран Липовача, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок

Изучай Haskell во имя добра! - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Миран Липовача
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эй, привет

Т-Е-В-И-Р-П- -,-Й-Э

Выражение intersperse '-' . reverse . map toUpperберёт строку, отображает её с помощью функции toUpper, применяет функцию reverseк этому результату, а затем применяет к нему выражение intersperse '-'. Это более красивый способ записи следующего кода:

(\xs –> intersperse '-' (reverse (map toUpper xs)))

Функции в качестве функторов

Другим экземпляром класса Functor, с которым мы всё время имели дело, является (–>) r. Стойте!.. Что, чёрт возьми, означает (–>) r? Тип функции r –> aможет быть переписан в виде (–>) r a, так же как мы можем записать 2 + 3в виде (+) 2 3. Когда мы воспринимаем его как (–>) r a, то (–>)представляется немного в другом свете. Это просто конструктор типа, который принимает два параметра типа, как это делает конструктор Either.

Но вспомните, что конструктор типа должен принимать в точности один параметр типа, чтобы его можно было сделать экземпляром класса Functor. Вот почему нельзя сделать конструктор (–>)экземпляром класса Functor; однако, если частично применить его до (–>) r, это не составит никаких проблем. Если бы синтаксис позволял частично применять конструкторы типов с помощью сечений – подобно тому как можно частично применить оператор +,выполнив (2+), что равнозначно (+) 2, – вы могли бы записать (–>) rкак (r –>).

Каким же образом функции выступают в качестве функторов? Давайте взглянем на реализацию, которая находится в модуле Control.Monad.Instances.

instance Functor ((–>) r) where

fmap f g = (\x –> f (g x))

Сначала подумаем над типом метода fmap:

fmap :: (a –> b) –> f a –> f b

Далее мысленно заменим каждое вхождение идентификатора f, являющегося ролью, которую играет наш экземпляр функтора, выражением (–>) r. Это позволит нам понять, как функция fmapдолжна вести себя в отношении данного конкретного экземпляра. Вот результат:

fmap :: (a –> b) –> ((–>) r a) –> ((–>) r b)

Теперь можно записать типы (–>) r aи (–>) r bв инфиксном виде, то есть r –> aи r –> b, как мы обычно поступаем с функциями:

fmap :: (a –> b) –> (r –> a) –> (r –> b)

Хорошо. Отображение одной функции с помощью другой должно произвести функцию, так же как отображение типа Maybeс помощью функции должно произвести тип Maybe, а отображение списка с помощью функции – список. О чём говорит нам предыдущий тип? Мы видим, что он берёт функцию из aв bи функцию из rв aи возвращает функцию из rв b. Напоминает ли это вам что-нибудь? Да, композицию функций!.. Мы присоединяем выход r –> aко входу a –> b, чтобы получить функцию r –> b, чем в точности и является композиция функций. Вот ещё один способ записи этого экземпляра:

instance Functor ((–>) r) where

fmap = (.)

Код наглядно показывает, что применение функции fmapк функциям – это просто композиция функций.

В исходном коде импортируйте модуль Control.Monad.Instances, поскольку это модуль, где определён данный экземпляр, а затем загрузите исходный код и попробуйте поиграть с отображением функций:

ghci> :t fmap (*3) (+100)

fmap (*3) (+100) :: (Num a) => a –> a

ghci> fmap (*3) (+100) 1

303

ghci> (*3) `fmap` (+100) $ 1

303

ghci> (*3) . (+100) $ 1

303

ghci> fmap (show . (*3)) (*100) 1

"300"

Мы можем вызывать fmapкак инфиксную функцию, чтобы сходство с оператором .было явным. Во второй строке ввода мы отображаем (+100)с помощью (*3), что даёт функцию, которая примет ввод, применит к нему (+100), а затем применит к этому результату (*3). Затем мы применяем эту функцию к значению 1.

Как и все функторы, функции могут восприниматься как значения с контекстами. Когда у нас есть функция вроде (+3), мы можем рассматривать значение как окончательный результат функции, а контекстом является то, что мы должны применить эту функцию к чему-либо, чтобы получить результат. Применение fmap (*3)к (+100)создаст ещё одну функцию, которая действует так же, как (+100), но перед возвратом результата к этому результату будет применена функция (*3).

Тот факт, что функция fmapявляется композицией функций при применении к функциям, на данный момент не слишком нам полезен, но, по крайней мере, он вызывает интерес. Это несколько меняет наше сознание и позволяет нам увидеть, как сущности, которые действуют скорее как вычисления, чем как коробки ( IOи (–>) r), могут быть функторами. Отображение вычисления с помощью функции возвращает тот же самый тип вычисления, но результат этого вычисления изменён функцией.

Перед тем как перейти к законам, которым должна следовать fmap, давайте ещё раз задумаемся о типе fmap:

fmap :: (a –> b) –> f a –> f b

Если помните, введение в каррированные функции в главе 5 началось с утверждения, что все функции в языке Haskell на самом деле принимают один параметр. Функция a –> b –> cв действительности берёт только один параметр типа a, после чего возвращает функцию b –> c, которая принимает один параметр типа bи возвращает значение типа c. Вот почему вызов функции с недостаточным количеством параметров (её частичное применение) возвращает нам обратно функцию, принимающую несколько параметров, которые мы пропустили (если мы опять воспринимаем функции так, как если бы они принимали несколько параметров). Поэтому a –> b –> cможно записать в виде a –> (b –> c), чтобы сделать каррирование более очевидным.

Аналогичным образом записав fmap a b f a f b мы можем - фото 72

Аналогичным образом, записав fmap :: (a –> b) –> (f a –> f b), мы можем воспринимать fmapне как функцию, которая принимает одну функцию и значение функтора и возвращает значение функтора, но как функцию, которая принимает функцию и возвращает новую функцию, которая такая же, как и прежняя, за исключением того, что она принимает значение функтора в качестве параметра и возвращает значение функтора в качестве результата. Она принимает функцию типа a –> bи возвращает функцию типа f a –> f b. Это называется «втягивание функции» . Давайте реализуем эту идею, используя команду :tв GHCi:

ghci> :t fmap (*2)

fmap (*2) :: (Num a, Functor f) => f a –> f a

ghci> :t fmap (replicate 3)

fmap (replicate 3) :: (Functor f) => f a –> f [a]

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Миран Липовача читать все книги автора по порядку

Миран Липовача - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изучай Haskell во имя добра! отзывы


Отзывы читателей о книге Изучай Haskell во имя добра!, автор: Миран Липовача. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x