Миран Липовача - Изучай Haskell во имя добра!
- Название:Изучай Haskell во имя добра!
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-749-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Миран Липовача - Изучай Haskell во имя добра! краткое содержание
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.
Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
ghci> "один" `mappend` "два"
"одиндва"
ghci> "два" `mappend` "один"
"дваодин"
И это нормально. Тот факт, что при умножении выражения 3 * 5и 5 * 3дают один и тот же результат, – это просто свойство умножения, но оно не выполняется для большинства моноидов.
Типы Product и Sum
Мы уже изучили один из способов рассматривать числа как моноиды: просто позволить бинарной функции быть оператором *, а единичному значению – быть 1. Ещё один способ для чисел быть моноидами состоит в том, чтобы в качестве бинарной функции выступал оператор +, а в качестве единичного значения – значение 0:
ghci> 0 + 4
4
ghci> 5 + 0
5
ghci> (1 + 3) + 5
9
ghci> 1 + (3 + 5)
9
Законы моноидов выполняются, потому что если вы прибавите 0 к любому числу, результатом будет то же самое число. Сложение также ассоциативно, поэтому здесь у нас нет никаких проблем.
Итак, в нашем распоряжении два одинаково правомерных способа для чисел быть моноидами. Какой же способ выбрать?.. Ладно, мы не обязаны выбирать! Вспомните, что когда имеется несколько способов определения для какого-то типа экземпляра одного и того же класса типов, мы можем обернуть этот тип в декларацию newtype, а затем сделать для нового типа экземпляр класса типов по-другому. Можно совместить несовместимое.
Модуль Data.Monoidэкспортирует для этого два типа: Productи Sum.
Productопределён вот так:
newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)
Это всего лишь обёртка newtypeс одним параметром типа наряду с некоторыми порождёнными экземплярами. Его экземпляр для класса Monoidвыглядит примерно так:
instance Num a => Monoid (Product a) where
mempty = Product 1
Product x `mappend` Product y = Product (x * y)
Значение mempty– это просто 1, обёрнутая в конструктор Product. Функция mappendпроизводит сопоставление конструктора Productс образцом, перемножает два числа, а затем оборачивает результирующее число. Как вы можете видеть, имеется ограничение класса Num a. Это значит, что Product aявляется экземпляром Monoidдля всех значений типа a, для которых уже имеется экземпляр класса Num. Для того чтобы использовать тип Product aв качестве моноида, мы должны произвести некоторое оборачивание и разворачивание newtype:
ghci> getProduct $ Product 3 `mappend` Product 9
27
ghci> getProduct $ Product 3 `mappend` mempty
3
ghci> getProduct $ Product 3 `mappend` Product 4 `mappend` Product 2
24
ghci> getProduct . mconcat . map Product $ [3,4,2]
24
Тип Sumопределён в том же духе, что и тип Product, и экземпляр тоже похож. Мы используем его точно так же:
ghci> getSum $ Sum 2 `mappend` Sum 9
11
ghci> getSum $ mempty `mappend` Sum 3
3
ghci> getSum . mconcat . map Sum $ [1,2,3]
6
Типы Any и All
Ещё одним типом, который может действовать как моноид двумя разными, но одинаково допустимыми способами, является Bool. Первый способ состоит в том, чтобы заставить функцию ||, которая представляет собой логическое ИЛИ, действовать как бинарная функция, используя Falseв качестве единичного значения. Если при использовании логического ИЛИ какой-либо из параметров равен True, функция возвращает True; в противном случае она возвращает False. Поэтому если мы используем Falseв качестве единичного значения, операция ИЛИ вернёт Falseпри использовании с False– и Trueпри использовании с True. Конструктор newtype Anyаналогичным образом имеет экземпляр класса Monoid. Он определён вот так:
newtype Any = Any { getAny :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)
А его экземпляр выглядит так:
instance Monoid Any where
mempty = Any False
Any x `mappend` Any y = Any (x || y)
Он называется Any, потому что x `mappend` yбудет равно True, если любое из этих двух значений равно True. Даже когда три или более значений Bool, обёрнутых в Any, объединяются с помощью функции mappend, результат будет содержать True, если любое из них равно True.
ghci> getAny $ Any True `mappend` Any False
True
ghci> getAny $ mempty `mappend` Any True
True
ghci> getAny . mconcat . map Any $ [False, False, False, True]
True
ghci> getAny $ mempty `mappend` mempty
False
Другой возможный вариант экземпляра класса Monoidдля типа Bool– всё как бы наоборот: заставить оператор &&быть бинарной функцией, а затем сделать значение Trueединичным значением. Логическое И вернёт True, только если оба его параметра равны True.
Это объявление newtype:
newtype All = All { getAll :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)
А это экземпляр:
instance Monoid All where
mempty = All True
All x `mappend` All y = All (x && y)
Когда мы объединяем значения типа Allс помощью функции mappend, результатом будет Trueтолько в случае, если все значения, использованные в функции mappend, равны True:
ghci> getAll $ mempty `mappend` All True
True
ghci> getAll $ mempty `mappend` All False
False
ghci> getAll . mconcat . map All $ [True, True, True]
True
ghci> getAll . mconcat . map All $ [True, True, False]
False
Так же, как при использовании умножения и сложения, мы обычно явно указываем бинарные функции вместо оборачивания их в значения newtypeи последующего использования функций mappendи mempty. Функция mconcatкажется полезной для типов Anyи All, но обычно проще использовать функции orи and. Функция orпринимает списки значений типа Boolи возвращает True, если какое-либо из них равно True. Функция andпринимает те же значения и возвращает значение True, если все из них равны True.
Моноид Ordering
Помните тип Ordering? Он используется в качестве результата при сравнении сущностей и может иметь три значения: LT, EQи GT, которые соответственно означают «меньше, чем», «равно» и «больше, чем».
ghci> 1 `compare` 2
LT
ghci> 2 `compare` 2
EQ
ghci> 3 `compare` 2
GT
При использовании чисел и значений типа Boolпоиск моноидов сводился к просмотру уже существующих широко применяемых функций и их проверке на предмет того, проявляют ли они какое-либо поведение, присущее моноидам. При использовании типа Orderingнам придётся приложить больше старания, чтобы распознать моноид. Оказывается, его экземпляр класса Monoidнастолько же интуитивен, насколько и предыдущие, которые мы уже встречали, и кроме того, весьма полезен:
Интервал:
Закладка: