Камерон Хьюз - Параллельное и распределенное программирование на С++
- Название:Параллельное и распределенное программирование на С++
- Автор:
- Жанр:
- Издательство:Издательский дом «Вильямс»
- Год:2004
- Город:МоскваСанкт-ПетербургКиев
- ISBN:ISBN 5-8459-0686-5 (рус.)ISBN 0-13-101376-9 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Камерон Хьюз - Параллельное и распределенное программирование на С++ краткое содержание
Эта книга адресована программистам, проектировщикам и разработчикам программных продуктов, а также научным работникам, преподавателям и студентам, которых интересует введение в параллельное и распределенное программирование с использованием языка С++.
Параллельное и распределенное программирование на С++ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Диаграммы развертывания используются для моделирования системы с точки зрени я их поставки. Базовыми элементами диаграммы развертывания являются узлы и компоненты. Узлы представляют блоки оборудования, а компоненты— части программного обеспечения. В символах узлов указывается, какие объекты или компоненты установлены на них. При моделировании всей системы базовым элементом является пакет. Пакеты можно использовать для представления систем и подсистем. Межлу пакетами могут существовать отношения, которые также отражаются на диаграмме.
Проектирование компонентов для поддержки параллелизма
«Как только мы пересекаем черту, чтобы реализовать себя в компьютерной технологии, наши успехи начинают зависеть от способности нашего ума к эволюции. Мы становимся частью программного, а не аппаратного обеспечения.»
Рей Курзвейл (Ray Kurzweil), The Age of Spiritual MachinesПри реализации параллелизма в программном обеспечении необходимо следовать одному важном)- правилу: параллелизм нужно обнаружить, а не внести извне. Иногда цель увеличения быстродействия программы не является достаточно оп-равданной для насаждения параллелизма в логику программы, которая по своей природе является последовательной. Параллелизм в проекте должен быть естественным следствием требований системы. Если параллельность определена в технических требованиях ксистеме, то следует с самого начала рассматривать варианты архитектуры и алгоритмы, которые поддерживают параллелизм. В противном случае необходимость паралле-лизма «всплывет» в уже существующей системе, которая изначально была нацелена лишь на выполнение последовательных действий. Такал участь часто постигает системы, которые первоначально разрабатывались как однопользовательские, а затем постепенно вырастали во многопользовательские, или системы, которые с функциональной точки зрения слишком далеко отошли от исходных спецификаций. В таких системах намерение внести в систему параллелизм можно сравнить с попыткой «махать руками после драки», и в этом случае для поддержки параллельности остается лишь делать архитектурные «пристройки». В этой книге мы описываем методы реализации естественного параллелизма. Другими словами, если мы знаем, что нам нужно обеспечить параллелизм, нас интересует, как это сделать, используя средства С++?
Мы представляем архитектурный подход к управлению параллелизмом в программе, используя преимущества С++-поддержки объектно-ориентированного программирования и универсальности. В частности, С++-средства поддержки наследования, полиморфизма и шаблонов успешно применяются для реализации архитектурных решений и программных компонентов, которые поддерживают параллельность. Методы объектно-ориентированного программирования обеспечивают поддержку десяти типов классов, перечисленных в табл. 11.1.
Таблица 11.1. Типы объектно-ориентированных классов
Шаблонный класс Обобщенный код, который может использовать любой тип; реальный тип является параметром для тела этого кода
Контейнерный класс Класс, используемый для хранения объектов во внутренней или внешней памяти
Виртуальный базовый класс Базовый класс, который служит прямой и/или косвенной основой для создания производных посредством множественного наследования; только одна его копия разделяется всеми его производными классами
Абстрактный класс Класс, который поддерживает интерфейс для производных классов и который может быть использован только в качестве базового; используется как макет для построения других классов
Интерфейсный класс Класс, который используется для установки интерфейса других классов
Узловой класс Класс, функции которого расширены за счет добавления новых членов к тем, которые были унаследованы от базового класса
Доменный класс Класс, созданный для имитации некоторого элемента в конкретной предметной области; значение класса связано с этой предметной областью
Составной класс Класс, который содержит другие классы; имеет с этими классами отношения типа «целое-часть»
Конкретный класс Класс, реализация которого определена, что позволяет объявлять экземпляры этого класса; он не предполагается для использования в качестве базового класса и не прелусматривает попыток создавать операции общего характера
Каркасный класс Класс (или коллекция классов), который имеет предопределенную структуру и представляет обобщенный характер функционирования
Безусловно, эти типы классов особенно полезны для проектов, в которых предполагается реализовать параллельность. Дело в том, что они позволяют внедрить принцип компоновки из стандартных блоков. Мы обычно начинаем с примитивных компонентов, используя их для построения классов синхронизации. Классы синхронизации позволят нам создавать контейнерные и каркасные классы, рассчитанные на безопасное внедрение параллелизма. Каркасные классы представляют собой строительные блоки, предназначенные для таких параллельных архитектур более высокого уровня, как мультиагентные системы и «доски объявлений». На каждом уровне сложность параллельного и распределенного программирования уменьшается благодаря использованию различных типов классов, перечисленных в табл. 11.1.
Итак, начнем с интерфейсного класса. Интерфейсный (или адаптерный) класс испоользуется для модификации или усовершенствования интерфейса другого класса или множества классов. Интерфейсный класс может также выступать в качестве оболочки, созданной вокруг одной или нескольких функций, которые не являются членами конкретного класса Такая роль интерфейсного класса позволяет обеспечить обьектно-ориентированный интерфейс с программным обеспечением, которое необязательно является объектно-ориентированным. Более того, интерфейсные классы позволяют упростить интерфейсы таких библиотек функций, как POSIX threads, PVM и MPI. Мы можем «обернуть» необъектно-ориентированную функцию в объектно-ориеитированный интерфейс; либо мы можем «обернуть» в интерфейсный класс некоторые данные, инкапсулировать их и предоставить им таким образом объектно-ориентированный интерфейс. Помимо упрощения сложности некоторых библиотек функций, интерфейсные классы используются для обеспечения разработчиков ПО согласующимся интерфейсом API (Application Programmer Interface). Например, С++-программисты, которые привыкли работать с iostream-классами, получат возможность выполнять операции ввода-вывода, оперируя категориями обьектно-ориентированпых потоков данных. Кривая обучения существенно минимизируется, если новые методы ввода-вывода описать в виде привычного iostream-представлеиия. Например, мы можем представить библиотеку средств передачи сообщений MPI как коллекцию потоков.
Читать дальшеИнтервал:
Закладка: