Эмили Робинсон - Data Science для карьериста
- Название:Data Science для карьериста
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- Город:Санкт-Петербург
- ISBN:978-5-4461-1734-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эмили Робинсон - Data Science для карьериста краткое содержание
В формате PDF A4 сохранен издательский макет.
Data Science для карьериста - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
У большинства организаций такого же масштаба есть собственный арсенал технологий. Поэтому вам как сотруднику КИТк придется освоить способы работы с данными, характерные именно для этой компании. Изучение специализированного софта здорово поможет на текущей должности, но не в других фирмах.
Вам как специалисту по данным наверняка понадобится несколько видов инструментов. Поскольку КИТк – компания весьма крупная, она хорошо поддерживает распространенные языки, такие как R и Python. Некоторые команды порой работают с платными языками вроде SAS или SPSS, но это бывает реже. Если вы хотите использовать необычный язык, который нравится вам, но мало кем используется (скажем, Haskell), нужно будет получить согласие руководителя.
Комплекс технологий МО сильно различается в зависимости от отдела. Некоторые группы используют микросервисы и контейнеры для эффективного развертывания моделей, тогда как другие работают с устаревшими производственными системами. Разнообразие стека для развертывания ПО затрудняет подключение к API других команд; единой базы знаний или хотя бы понимания того, что происходит, попросту нет.
2.1.3. Плюсы и минусы КИТк
Быть дата-сайентистом в КИТк означает иметь потрясающую работу в потрясающей компании. А поскольку эта компания технологическая, сотрудники знают, кто такой специалист по данным и что полезного он может сделать. Когда все понимают вашу роль одинаково, это значительно облегчает работу. Если в компании много дата-сайентистов, значит, у вас будет широкий круг поддержки, а также возможность плавно влиться в команду и получить доступ к необходимым ресурсам. Оказаться в затруднении один на один – редкость.
В то же время у наличия толпы специалистов по работе с данными есть свои недостатки. Стек технологий сложен, в нем непросто ориентироваться, потому что создавался он разными людьми и разными способами. Может так случиться, что анализ, который вас попросили воссоздать, написал человек, который уже уволился, да еще и на незнакомом вам языке. Вам будет сложнее выделиться среди множества других специалистов. Кроме того, может быть непросто найти интересный проект, потому что над многими из них уже работают другие люди.
Как устоявшаяся компания КИТк дает больше гарантий занятости. Риск увольнений есть всегда, но работа здесь не похожа на работу в стартапе, где финансирование может прекратиться в любой момент. Кроме того, в крупных компаниях руководители больше склонны искать новых сотрудников, чем увольнять старых, потому что увольнение сложно юридически.
У сотрудников КИТк много специализаций – это одновременно и хорошо, и плохо. Дата-инженеры, архитекторы данных, дата-сайентисты, маркетологи и другие выполняют разные задачи, связанные с Data Science, а значит, вокруг вас будет много людей, которым можно передать работу. Например, создавать собственную базу данных вас вряд ли заставят. С одной стороны, хорошо иметь возможность делегировать задачи, для которых у вас нет опыта, а с другой – так вы не получите новые навыки.
Еще один минус КИТк – бюрократия. В крупной компании введение новых технологий, поездки на конференции и запуск проектов придется согласовывать с начальством. Хуже того, от проекта, над которым вы работали годами, могут отказаться из-за конфликта между двумя руководителями, а ваш проект может «пострадать от шальной пули». Или, что еще хуже, ваш проект может пасть случайной жертвой конфликта двух руководителей – его могут просто закрыть.
КИТк – отличная компания для дата-сайентистов, которые хотят решать сложные задачи с помощью передовых методов. Это касается и специалистов по принятию решений, планирующих заниматься анализом, и инженеров МО, мечтающих создавать и развертывать модели. У крупных компаний есть масса задач и денег, чтобы пробовать новые вещи. Возможно, вы не сможете самостоятельно принимать важные решения, но будете знать, что внесли в них свой вклад.
Работа в КИТк не подойдет специалистам, которые хотят самостоятельно руководить и принимать решения. В большой компании есть установленные методы, протоколы и модели, которым придется следовать.
2.2. HandbagLOVE: устоявшийся ритейлер

• Похожа на: Payless, Bed Bath & Beyond и Best Buy [1] Американские сети магазинов одежды и товаров для дома с низкими ценами. – Примеч. ред.
.
• Возраст компании: 45 лет.
• Количество сотрудников: 15 000 (10 000 в розничных магазинах, 5000 в офисах).
HandbagLOVE – это розничная сеть с 250 точками по всей территории США, которая занимается продажей кошельков и клатчей. Здесь трудятся оформители магазинов и специалисты по повышению качества обслуживания клиентов. Компания на рынке уже давно, но новые технологии осваивать не спешит: прошло довольно много времени, прежде чем у нее появились первый веб-сайт и приложение.
В последнее время продажи HandbagLOVE упали, поскольку Amazon и другие интернет-магазины потеснили компанию на рынке. Руководство осознало очевидное и решило улучшить ситуацию с помощью технологий, инвестируя в онлайн-приложение и Amazon Alexa, а также пытаясь использовать накопленные данные. Финансовые аналитики HandbagLOVE уже много лет прекрасно рассчитывают совокупную статистику по заказам и клиентам, но лишь недавно компания подумала о том, чтобы нанять дата-сайентистов для лучшего понимания клиентов.
Новая группа специалистов по анализу данных была создана на базе службы финансовых аналитиков, которые ранее составляли отчеты по показателям эффективности компании в Excel. После дополнительного привлечения дата-сайентистов команда начала создавать более сложные продукты: ежемесячные статистические прогнозы роста клиентов в R, интерактивные информационные панели для лучшего понимания продаж, а также сегментацию, объединяющую клиентов в удобные группы для целей маркетинга.
Даже после создания моделей МО для новых отчетов и анализа HandbagLOVE далека от внедрения их в непрерывный рабочий процесс. Все рекомендации по продуктам на ее веб-сайте и в приложении основаны на продуктах МО от сторонних производителей. В команде по анализу данных надеются изменить ситуацию, но никому не известно, когда это все же произойдет.
2.2.1. Команда: небольшая группа, стремящаяся к росту
Команда полагается на специалистов по созданию отчетов, а не по машинному обучению, потому что оно для них в новинку. Никто не владел современными методами статистики и МО, так что сотрудникам приходилось вникать во все самостоятельно. Прекрасно, когда люди могут в одиночку изучать новые интересующие их техники. Обратная сторона медали – неэффективные или даже неправильные методы: в компании нет экспертов, которые могли бы проверить работу.
Читать дальшеИнтервал:
Закладка: