Денис Соломатин - Основы статистической обработки педагогической информации

Тут можно читать онлайн Денис Соломатин - Основы статистической обработки педагогической информации - бесплатно ознакомительный отрывок. Жанр: comp-programming, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Основы статистической обработки педагогической информации
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • ISBN:
    978-5-532-04389-3
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Денис Соломатин - Основы статистической обработки педагогической информации краткое содержание

Основы статистической обработки педагогической информации - описание и краткое содержание, автор Денис Соломатин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Учебное пособие содержит текстовые сведения, иллюстрации и задания по основам статистической обработки педагогической информации в R, вольный пересказ содержимого сайта r4ds.had.co.nz, многие годы аккумулирующего труды исследователей всего мира, с занимательными дополнениями и историческими справками в попытке адаптации материала под профессиональные нужды современных онлайн-учителей. Последняя глава посвящена изучению возможностей R, позволяющих открыть собственную онлайн-школу.

Основы статистической обработки педагогической информации - читать онлайн бесплатно ознакомительный отрывок

Основы статистической обработки педагогической информации - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Соломатин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Вторым шагом скачайте и установите RStudio httpsrstudiocom этот этап - фото 7

Вторым шагом скачайте и установите RStudio (https://rstudio.com) – этот этап можно пропустить, пока не планируете профессионального освоения данного инструмента. Тем не менее, имейте ввиду, что RStudio в первую очередь это свободная среда разработки программного обеспечения с открытым исходным кодом для языка программирования R. Дистрибутивы RStudio Desktop доступны для Linux, OS X и Windows. Более того, в RStudio Server предоставляется доступ через браузер к RStudio установленной на удаленном Linux-сервере.

Процесс установки RStudio не многим отличается от установки R.

В на подготовительном этапе предлагается выбрать папку установки на диске - фото 8

В на подготовительном этапе предлагается выбрать папку установки на диске, имеющем достаточно свободного места для развёртывания дистрибутива.

Последующие этапы позволяют выбрать опциональное создание ярлыков программы по - фото 9

Последующие этапы позволяют выбрать опциональное создание ярлыков программы, по умолчанию располагаемых в меню «Пуск», и наблюдать за процессом завлечения и копирования файлов RStudio в папку назначения. Так как RStudio написана на языке программирования C++ и использует фреймворк Qt для графического интерфейса пользователя, то в операционную систему будут установлены все необходимые для запуска дополнительные библиотеки сторонних разработчиков. Наиболее крупной из которых, в частности, является Qt5WebEngineCore.dll. По окончанию процесса копирования работа мастера установки будет завершена.

Если пользоваться R без RStudio то запускаем консоль в ПускRR x64 после - фото 10

Если пользоваться R без RStudio, то запускаем консоль в Пуск/R/R x64, после разрядности записывается номер установленной версии программного комплекса. Интерфейс будет чуть проще чем RStudio, но для решения элементарных задач достаточным:

Третьим шагом установите надстройку для многофакторного анализа - фото 11

Третьим шагом установите надстройку для многофакторного анализа (http://factominer.free.fr), для этого в консоли R просто вводится команда

install.packages("FactoMineR")

install.packages("Factoshiny")

после чего выбирается зеркало для загрузки надстройки.

Для включения пакета следует выбрать пункт меню ПакетыВключить - фото 12

Для включения пакета следует выбрать пункт меню «Пакеты/Включить пакет…/FactoMineR/ОК», либо установить в пункте меню «Пакеты/установить пакеты…/Factoshiny/ОК». После установки консоль готова для работы.

Кратко опишем, в каких целях используется пакет Factoshiny. Не секрет, что качественная графическая иллюстрация зачастую говорит больше, чем длинная речь оратора, поэтому крайне важно улучшать графики, полученные любыми основными компонентами методами (например: Метод главных компонент «PCA», Анализ соответствий «CA», Анализ повторяющихся соответствий «MCA», Многофакторный анализ «MFA», и многие другие). Factoshiny позволяет легко улучшить графики в интерактивном режиме. Этот удобный интерфейс позволяет параметризовать используемые методы и изменять графические параметры. При этом не нужно знать, как программировать.

Внося изменения в интерактивном режиме через интуитивно понятный интерфейс, становится очевидным, как улучшаются соответствующие графики. Результаты настроек графиков и параметров обновляются автоматически. В дальнейшем можно скачать получившиеся графики, а также строки настроенного кода, чтобы повторить анализ. Кроме того, можно сохранить, а затем повторно использовать объект, полученный из Factoshiny, для дальнейшей модификации графиков. При каждом новом запуске интерфейс открывается с теми настройками, которые были выбраны при последнем выходе из программы, следовательно, быстро можно продолжить изменение параметров выбранного метода факторного анализа или визуализации графиков.

Подготовив рабочее окружение, можно в качестве демонстрации из Google-документов выгрузить Excel-таблицу table.xlsx успеваемости своего онлайн-класса (с оценками для 5-7 учеников по 7-10 темам) и выполнить анализ данных созданной электронной таблицы средствами R. Для этого достаточно ввести следующую серию команд в консоли R (начинающиеся с символа # строки пропускаются, так как воспринимаются системой в качестве комментариев, подробнее необходимость комментирования исходных кодов будет обоснована в следующих разделах):

1) подключаем библиотеку импорта данных из .xls

library(readxl)

2) подключаем библиотеку многофакторного анализа

library(Factoshiny)

3) загружаем в переменную My_table содержимое файла table.xlsx

My_table <���– read_excel("C:/путь к файлу/table.xlsx")

4) запускаем графический интерфейс для визуальной настройки и получения статотчетов PCA, в примере 1, 2, 3, 4, 5, 6, 7, 8 – номера импортируемых колонок из электронной таблицы My_table

PCAshiny(My_table[,c(1, 2, 3, 4, 5, 6, 7, 8)])

5) делаем выводы на предмет ведущих факторов, тем, вызвавших наибольшие/наименьшие затруднения учащихся и их взаимовлияния, тенденции развития.

Предположим, что электронный журнал, экспортированный в файл D:\test.xlsx содержит следующие данные об успеваемости обучающихся в 7а и 7б классах:

Запустим RStudio с предустановленными пакетами многофакторного анализа и в - фото 13

Запустим RStudio с предустановленными пакетами многофакторного анализа и в консоли R введём серию команд:

library(readxl)

library(Factoshiny)

My_table <���– read_excel("D:/test.xlsx")

PCAshiny(My_table[,c(1, 3, 4, 5, 6, 7)])

Система запишет лог выполнения:

В открывшемся окне браузера настроим некоторые опции Под номером 1 на рисунке - фото 14

В открывшемся окне браузера настроим некоторые опции. Под номером 1 на рисунке отмечено включение дополнительных параметров построения графика; ПОД номером 2 настраивается способ выделения переменных цветом; под номером 3 включается изображение эллипсов доверительных интервалов значений переменных из разных категорий:

По полученному рисунку становится очевидным следующее так как на круге - фото 15

По полученному рисунку становится очевидным следующее:

– так как на круге корреляций вектора Тема1 и Тема4 фактически совпадают, то с этими темами большинство справились одинаково хорошо (если быть более точным, разделение по горизонтальной оси охватывает 52.06%, а по вертикальной – 28.27% тестируемых);

– эталонный ученик оказался в первой четверти, где лежат вектора Тема2, Тема3 и Тема5, значит остальным хуже дались перечисленные Тема2, Тема3 и Тема5;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Соломатин читать все книги автора по порядку

Денис Соломатин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Основы статистической обработки педагогической информации отзывы


Отзывы читателей о книге Основы статистической обработки педагогической информации, автор: Денис Соломатин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x