Ирина Козлова - Программирование

Тут можно читать онлайн Ирина Козлова - Программирование - бесплатно ознакомительный отрывок. Жанр: comp-programming, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
Ирина Козлова - Программирование
  • Название:
    Программирование
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    978-5-699-26658-6
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ирина Козлова - Программирование краткое содержание

Программирование - описание и краткое содержание, автор Ирина Козлова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Информативные ответы на все вопросы курса «Программирование» в соответствии с Государственным образовательным стандартом.

Программирование - читать онлайн бесплатно ознакомительный отрывок

Программирование - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ирина Козлова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

extern complex sqrt(complex); extern int erro rnumber; struct user;

не служат одновременно определениями. То есть объект, к которому они относятся, должен быть определен где-то еще. Код (тело) функции sqrt должен определяться определенным описанием, память для переменной erro rnumber типа int должна выделяться другим описанием , и какое-то другое описание типа user должно определять, что он из себя представляет. В C++ программе всегда должно присутствовать только одно определение каждого имени, но описаний может быть большое количество и все описания должны согласовываться с типом объекта, которого они касаются, поэтому в этом фрагменте есть две ошибки:

int count;

int count; // ошибка: переопределение exnern int erro rnumber; exnern int error number; // ошибка: несоответствие типов

29. Описание и скрытие имен

Описание определяет имя в области видимости. Таким образом, имя может применяться только в некоторой части программы. Для имени, которое описано в функции (такое имя часто называют локальным), эта область видимости располагается от точки описания до конца блока, в котором появилось описание. Для имени не в функции и не в классе (называемого часто глобальным именем) область видимости находится от точки описания до конца файла, в котором появилось описание. Описание имени в блоке может прятать описание во внутреннем блоке или глобальное имя, т. е. можно переопределять имя внутри блока с целью ссылки на другой объект. После выхода из блока имя опять получает свое прежнее значение.

Например:

int x; // глобальное x

f() {

int x; // локальное x прячет глобальное x x = 1; // присвоить локальному x

{

int x; // прячет первое локальное x

x = 2; // присвоить второму локальному x

}

x = 3; // присвоить первому локальному x

}

int* p = &x // взять адрес глобального x

Скрытие имен обязательно при написании больших программ. Но читающий человек легко может не заметить, что имя скрыто, и некоторые ошибки, которые возникают вследствие этого, очень тяжело обнаружить, в основном потому, что они редкие. Применение для глобальных переменных имен i или x напрашивается на неприятности. С помощью операции разрешения области видимости:: можно применять скрытое глобальное имя. Например: int x;

f()

{

int x = 1; // скрывает глобальное x::x = 2; // присваивает глобальному x

}

Однако возможности применять скрытое локальное имя нет. Область видимости имени начинается точкой описания. То есть имя можно применять даже для задания его собственного значения. К примеру:

int x;

f() {

int x = x; // извращение

}

30. Имена переменных

Имя (идентификатор) включает в себя последовательность букв и цифр. Первый символ должен являться буквой. Знак подчерка считается буквой . C++ не ограничивает число символов в имени, но определенные части реализации находятся вне ведения автора компилятора (в частности, загрузчик), и они подобные ограничения налагают.

Приведем примеры последовательностей символов, которые не могут применяться как идентификаторы:

012 a fool $sys class 3var pay.due foo~bar.name if

Буквы в верхнем и нижнем регистрах являются различными, т. е. Count и count – разные имена, но вводить имена, почти не отличающиеся друг от друга, нежелательно. Имена, которые начинаются с подчерка, по традиции применяются для специальных средств среды выполнения, поэтому применять такие имена в прикладных программах не стоит.

Каждое имя (идентификатор) в C++ программе обладает ассоциированным с ним типом. Данный тип определяет, какие операции возможно применить к имени, а также как эти операции интерпретируются.

Целый тип char удобнее всего применять для хранения и обработки символов на некотором компьютере; обычно это 8-битовый байт. Размеры объектов C++ выражаются в единицах размера char, т. е. можно записать sizeof(char)==1.

Тип unsigned char является беззнаковым, и при его использовании имеем более переносимые программы, но при применении его вместо char могут появиться значительные потери в эффективности.

Тип void (пустой) синтаксически проявляет себя как основной тип. Но применять его следует только как часть производного типа, объектов типа void нет. Он применяется для указания, что функция не возвращает значение, или в качестве базового типа для указателей на объекты неизвестного типа.

void f() // f не возвращает значение

void* pv; // указатель на объект неизвестного типа

Для большинства типов T T* служит типом указатель на T. То есть в переменной типа T* может располагаться адрес объекта типа T. Для указателей на вектора и указателей на функции необходимо пользоваться более сложной записью:

int* pi;

int* pi;

char** cpp; // указатель на указатель на char

int (*vp)[10]; // указатель на вектор из 10 int’ов

int (*fp)(char, char*); // указатель на функцию

// получающую параметры (char, char*)

// и возвращающую int

31. Разыменование

Основной операцией над указателем является разыменование, т. е. ссылка на объект, на который указывает указатель. Эту операцию также именуют косвенным обращением. Например:

char c1 = 'a';

char* p = &c1 // в p хранится адрес c1 char c2 = *p; // c2 = 'a'

Над указателями можно осуществлять определенные арифметические действия. К примеру, функция, подсчитывающая число символов в строке (не считая завершающего 0):

int strlen(char* p) {

int i = 0;

while (*p++) i++; return i;

}

Два структурных типа различны, даже когда они имеют одинаковые члены. К примеру:

struct s1 {int a;};

struct s2 {int a;};

являются двумя разными типами, поэтому

s1 x;

s2 y = x; // ошибка: несоответствие типов.

Структурные типы отличаются и от основных типов, поэтому

s1 x;

int i = x; // ошибка: несоответствие типов

Но существует механизм описания нового имени для типа, который не требует введения нового типа. Описание с префиксом typedef вводит не новую переменную данного типа, а новое имя этого типа. К примеру:

typedef char* Pchar; Pchar p1,p2; char* p3 = p1;

32. Ссылка

Ссылка – это другое имя объекта. Главное применение ссылок заключается в спецификации операций для типов, определяе-мых пользователем. Их можно также применять как параметры функции. Запись x& представляет собой ссылку на x.

К примеру:

int i = 1;

int& r = i; // r и i теперь ссылаются на один int int x = r // x = 1 r = 2; // i = 2;

Ссылке следует быть инициализированной.

В большинстве машин можно обращаться к объектам намного быстрее, когда они помещены в регистр. В идеальном случае компилятор сам определяет оптимальную стратегию применения всех возможностей, доступных на машине, для которой компилируется программа. Но это не простая задача, поэтому иногда необходимо дать подсказку компилятору. Это осуществляется с помощью описания объекта как register.

К примеру:

register int i; register point cursor; register char* p;

Описание register применяют только тогда, когда эффективность действительно важна. C++ позволяет записать значения основных типов: символьных кон32б стант, целых констант и констант с плавающей точкой. Также ноль (0) может применяться как константа любого указательного типа, и символьные строки служат константами типа char[]. Можно также определить символические константы. Символическая константа представляет собой имя, значение которого нельзя изменить в его области видимости. В C++ существует три вида символических констант:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ирина Козлова читать все книги автора по порядку

Ирина Козлова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Программирование отзывы


Отзывы читателей о книге Программирование, автор: Ирина Козлова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x