Джонсон Харт - Системное программирование в среде Windows
- Название:Системное программирование в среде Windows
- Автор:
- Жанр:
- Издательство:Издательский дом Вильямс
- Год:2005
- Город:Москва • Санкт-Петербург • Киев
- ISBN:5-8459-0879-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джонсон Харт - Системное программирование в среде Windows краткое содержание
Эта книга посвящена вопросам разработки приложений с использованием интерфейса прикладного программирования операционных систем компании Microsoft (Windows 9х, Windows XP, Windows 2000 и Windows Server 2003). Основное внимание уделяется базовым системным службам, включая управление файловой системой, процессами и потоками, взаимодействие между процессами, сетевое программирование и синхронизацию. Рассматривается методика переноса приложений, написанных в среде Win32, в среду Win64. Подробно описываются все аспекты системы безопасности Windows и ее практического применения. Изобилие реальных примеров, доступных также и на Web-сайте книги, существенно упрощает усвоение материала.
Книга ориентирована на разработчиков и программистов, как высокой квалификации, так и начинающих, а также будет полезна для студентов соответствующих специальностей.
Системное программирование в среде Windows - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Объекты CS могут привлекаться для решения задач, аналогичных той, которую иллюстрирует рис. 8.1, где два потока увеличивают значение одной и той же переменной. Приведенный ниже фрагмент кода обеспечивает нечто большее, нежели простое увеличение переменной, поскольку для этого достаточно было бы воспользоваться функциями взаимоблокировки. Обратите внимание на спецификатор volatile, предотвращающий размещение текущего значения переменной оптимизирующим компилятором в регистре, а не в ячейке памяти, отведенной для хранения переменной. Кроме того, в этом примере используется промежуточная переменная; этот необязательный элемент снижает эффективность программы, однако позволяет более отчетливо продемонстрировать, каким образом решается задача, иллюстрируемая рис. 8.1.
CRITICAL_SECTION cs1;
volatile DWORD N = 0, М;
/* N — глобальная переменная, разделяемая всеми потоками. */
InitializeCriticalSection (&cs1);
…
EnterCriticalSection (&cs1);
if (N < N_MAX) { M = N; M += 1; N = M; }
LeaveCriticalSection (&cs1);
…
DeleteCriticalSection (&cs1);
На рис. 8.2 представлена одна из возможных последовательностей выполнения программы для случая, изображенного на рис. 8.1, и продемонстрировано, каким образом объекты CS упрощают решение проблемы синхронизации.
Программа 8.1 демонстрирует, насколько полезными могут быть объекты CS.
Пример: простая система "производитель/потребитель"
Программа 8.1 иллюстрирует, насколько полезными могут быть объекты CS. Кроме того, эта программа демонстрирует, как создаются защищенные структуры данных для хранения состояний объектов, и знакомит с понятием инварианта (invariant) — свойства состояния объекта, относительно которого гарантируется (путем соответствующей реализации программы), что оно будет истинным за пределами критического участка кода.
Рис. 8.2.Разделение общей памяти синхронизированными потоками
Описание задачи приводится ниже.
• Имеются два потока, производитель (producer) и потребитель (consumer), работающие в полностью асинхронном режиме.
• Производитель периодически создает сообщения, содержащие таблицу чисел, например, таблицу биржевых котировок, которая периодически обновляется.
• По требованию пользователя потребитель отображает текущие данные. Требуется, чтобы отображаемые данные представляли собой самый последний полный набор данных, но никакие данные не должны отображаться дважды.
• Данные не должны отображаться в те промежутки времени, когда они обновляются производителем; устаревшие данные также не должны отображаться. Обратите внимание на то, что многие сообщения вообще никогда не используются и, таким образом, "теряются". Этот пример является частным случаем конвейерной модели, в которой данные передаются из одного потока в другой.
• В качестве средства контроля целостности данных производитель вычисляет простую контрольную сумму [28] Использование в данном случае контрольной суммы, вычисляемой в результате применения операции исключающего "или" к битам сообщения, носит исключительно иллюстративный характер. Существует множество других, более совершенных методик проверки целостности данных, которые и должны использоваться в промышленных приложениях.
данных таблицы, которая далее сравнивается с аналогичной суммой, вычисленной потребителем, дабы удостовериться в том, что данные не были повреждены при их передаче из одного потока в другой. Данные, полученные при обращении к таблице в моменты ее обновления, будут недействительными; использование объектов CS гарантирует, что этого никогда не произойдет. Инвариантом блока сообщения (message block invariant) является корректность контрольной суммы для содержимого текущего сообщения.
• Обоими потоками поддерживается статистика суммарного количества отправленных, полученных и утерянных сообщений.
/* Глава 8. simplePC.с */
/* Поддерживает два потока — производителя и потребителя. */
/* Производитель периодически создает буферные данные с контрольными */
/* суммами, или "блоки сообщений", отображаемые потребителем по запросу */
/* пользователя. */
#include "EvryThng.h"
#include
#define DATA_SIZE 256
typedef struct msg_block_tag { /* Блок сообщения. */
volatile DWORD f_ready, f_stop; /* Флаги готовности и прекращения сообщений. */
volatile DWORD sequence; /* Порядковый номер блока сообщения. */
volatile DWORD nCons, nLost;
time_t timestamp;
CRITICAL_SECTION mguard; /* Структура защиты блока сообщения. */
DWORD checksum; /* Контрольная сумма содержимого сообщения. */
DWORD data[DATA_SIZE]; /* Содержимое сообщения. */
} MSG_BLOCK;
/* Одиночный блок, подготовленный к заполнению новым сообщением. */
MSG_BLOCK mblock = { 0, 0, 0, 0, 0 };
DWORD WINAPI produce(void*);
DWORD WINAPI consume(void*);
void MessageFill(MSG_BLOCK*);
void MessageDisplay(MSG_BLOCK*);
DWORD _tmain(DWORD argc, LPTSTR argv[]) {
DWORD Status, ThId;
HANDLE produce h, consume_h;
/* Инициализировать критический участок блока сообщения. */
InitializeCriticalSection (&mblock.mguard);
/* Создать два потока. */
produce_h = (HANDLE)_beginthreadex(NULL, 0, produce, NULL, 0, &ThId);
consume_h = (HANDLE)_beginthreadex (NULL, 0, consume, NULL, 0, &ThId);
/* Ожидать завершения потоков производителя и потребителя. */
WaitForSingleObject(consume_h, INFINITE);
WaitForSingleObject(produce_h, INFINITE);
DeleteCriticalSection(&mblock.mguard);
_tprintf(_T("Потоки производителя и потребителя завершили выполнение\n"));
_tprintf(_T("Отправлено: %d, Получено: %d, Известные потери: %d\n"), mblock.sequence, mblock.nCons, mblock.nLost);
return 0;
}
DWORD WINAPI produce(void *arg)
/* Поток производителя — создание новых сообщений через случайные */
/* интервалы времени. */
{
srand((DWORD)time(NULL)); /* Создать начальное число для генератора случайных чисел. */
while (!mblock.f_stop) {
/* Случайная задержка. */
Sleep(rand() / 100);
/* Получить и заполнить буфер. */
EnterCriticalSection(&mblock.mguard);
__try {
if (!mblock.f_stop) {
mblock.f_ready = 0;
MessageFill(&mblock);
mblock.f_ready = 1;
mblock.sequence++;
}
} __finally { LeaveCriticalSection (&mblock.mguard); }
}
return 0;
}
DWORD WINAPI consume (void *arg) {
DWORD ShutDown = 0;
CHAR command, extra;
/* Принять ОЧЕРЕДНОЕ сообщение по запросу пользователя. */
while (!ShutDown) { /* Единственный поток, получающий доступ к стандартным устройствам ввода/вывода. */
_tprintf(_T("\n**Введите 'с' для приема; 's' для прекращения работы: "));
_tscanf("%c%c", &command, &extra);
if (command == 's') {
Интервал:
Закладка: