Джонсон Харт - Системное программирование в среде Windows
- Название:Системное программирование в среде Windows
- Автор:
- Жанр:
- Издательство:Издательский дом Вильямс
- Год:2005
- Город:Москва • Санкт-Петербург • Киев
- ISBN:5-8459-0879-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джонсон Харт - Системное программирование в среде Windows краткое содержание
Эта книга посвящена вопросам разработки приложений с использованием интерфейса прикладного программирования операционных систем компании Microsoft (Windows 9х, Windows XP, Windows 2000 и Windows Server 2003). Основное внимание уделяется базовым системным службам, включая управление файловой системой, процессами и потоками, взаимодействие между процессами, сетевое программирование и синхронизацию. Рассматривается методика переноса приложений, написанных в среде Win32, в среду Win64. Подробно описываются все аспекты системы безопасности Windows и ее практического применения. Изобилие реальных примеров, доступных также и на Web-сайте книги, существенно упрощает усвоение материала.
Книга ориентирована на разработчиков и программистов, как высокой квалификации, так и начинающих, а также будет полезна для студентов соответствующих специальностей.
Системное программирование в среде Windows - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
8.8. Упражнение повышенной сложности. Объекты CRITICAL_SECTION предназначены для использования потоками в рамках одного и того же процесса. Что произойдет, если объект CS будет создан в разделяемой отображаемой области памяти? Смогут ли использовать CS оба процесса? Вы можете провести самостоятельный эксперимент, изменив программу таким образом, чтобы производитель и потребитель выполнялись в различных процессах.
ГЛАВА 9
Влияние синхронизации на производительность и рекомендации по ее повышению
В предыдущей главе были введены операции синхронизации, использование которых иллюстрировалось с привлечением нескольких относительно простых примеров. В следующей главе предлагаются более сложные, но вместе с тем более реалистичные и полезные примеры, а также описывается общая модель синхронизации, позволяющая решить многие практические задачи и повысить надежность программ. В данной же небольшой главе анализируется влияние синхронизация на производительность приложений и рассматриваются методы, минимизирующие отрицательные последствия этого влияния.
Несмотря на всю важность синхронизации потоков, применение этого средства сопряжено со значительными рисками снижения производительности, которые ниже частично обсуждаются на примере как однопроцессорных, так и многопроцессорных (SMP) систем. У возможных альтернативных решений имеются собственные достоинства и недостатки. Например, объекты CRITICAL_SECTION (CS) и мьютексы обладают почти одинаковыми свойствами и решают одну и ту же фундаментальную задачу. Вообще говоря, наиболее эффективным механизмом блокирования являются объекты CS, хотя это справедливо не во всех ситуациях. Кроме того, как показано в главе 10, объекты CS менее удобны в работе по сравнению с мьютексами. В некоторых случаях достаточно использовать функции взаимоблокировки потоков, а при тщательном проектировании и реализации приложения иногда можно вообще обойтись без использования объектов синхронизации.
Сначала мы обсудим сравнительные достоинства и недостатки объектов CS и мьютексов, дополнив этот анализ учетом факторов, проявляющихся в SMP-системах. К числу других рассмотренных ниже тем относятся спин-счетчики объектов CS, дросселирование семафоров и родство процессоров. Глава заканчивается сводкой рекомендаций, касающихся оптимизации производительности.
Примечание
В NT 5.0 достигнут значительный прогресс в плане повышения производительности. В ранних версиях NT и в Windows 9x некоторые из отмеченных выше проблем носили гораздо более острый характер.
Влияние синхронизации на производительность
Использование синхронизации в программах может и будет ухудшать их производительность, и в этом отношении следует быть особенно осмотрительным в случае SMP-систем. На первый взгляд, это противоречит здравому смыслу, поскольку от SMP-систем в целом можно было, бы ожидать только повышения производительности, а уж о том, что при переходе к ним быстродействие программ может снижаться, казалось бы, и речи идти не может. Тем не менее, в силу особенностей внутренних механизмов реализации, а также конкуренции между процессорами за право доступа к памяти могут наблюдаться неожиданные эффекты, в том числе и резкое ухудшение производительности программы.
Достоинства и недостатки объектов CRITICAL_SECTION
Прежде всего, мы попытаемся количественно оценить влияние объектов синхронизации на производительность, и сравним между собой объекты CRITICAL_SECTION и мьютексы. В программе statsMX.c (программа 9.1) для синхронизации доступа к специфической для каждого потока структуре данных используется мьютекс. Программа statsCS.c, листинг которой здесь не приводится, но его можно найти на Web-сайте книги, делает точно то же, но с использованием объекта CRITICAL_SECTION, тогда как в программе stats IN. с для этого привлекаются функции взаимоблокировки (interlocked functions). Наконец, в программе statsNS.с, которая также здесь не приводится, синхронизация вообще не используется; оказывается, в данном примере можно вообще обойтись без синхронизации, поскольку каждый рабочий поток обращается к собственной уникальной области памяти. Некоторые предостережения по этому поводу приведены в конце данного раздела. В реальных программах количество рабочих потоков может быть неограниченным, однако для простоты в программе 9.1 обеспечивается поддержка 64 потоков.
Описанная совокупность программ не только позволяет оценить зависимость производительности от выбора конкретного типа объекта синхронизации, но и говорит о следующих вещах:
• При тщательном проектировании программы в некоторых случаях можно вообще обойтись без использования синхронизации.
• В простейших ситуациях, например, когда требуется инкрементировать значение совместно используемой переменной, достаточно использовать функции взаимоблокировки.
• В большинстве случаев использование мьютексов обеспечивают более высокое быстродействие программы по сравнению с использованием объектов CS.
• Обычная методика заключается в определении структуры данных аргумента потока таким образом, чтобы она содержала информацию о состоянии, которая должна поддерживаться потоком, а также указатель на мьютекс или иной объект синхронизации.
/* Глава 9. statsMX.c */
/* Простая система "хозяин/рабочий", в которой каждый рабочий поток */
/* информирует главный поток о результатах своей работы для их отображения.*/
/* Версия, использующая мьютекс. */
#include "EvryThng.h"
#define DELAY_COUNT 20
/* Использование: statsMX nthread ntasks */
/* Запускается "nthread" рабочих потоков, каждой из которых поручается */
/* выполнение "ntasks" единичных рабочих заданий. Каждый поток сохраняет*/
/* информацию о выполненной работе в собственной неразделяемой ячейке */
/* массива, хранящего данные о выполненной потоком работе. */
DWORD WINAPI worker(void *);
typedef struct _THARG {
int thread_number;
HANDLE *phMutex;
unsigned int tasks_to_complete;
unsigned int *tasks_complete;
} THARG;
int _tmain(DWORD argc, LPTSTR argv[]) {
INT tstatus, nthread, ithread;
HANDLE *worker_t, hMutex;
unsigned int* task_count, tasks_per_thread;
THARG* thread_arg;
/* Создать мьютекс. */
hMutex = CreateMutex(NULL, FALSE, NULL);
nthread = _ttoi(argv[1]);
tasks_per_thread = _ttoi(argv[2]);
worker_t = malloc(nthread * sizeof(HANDLE));
task_count = calloc(nthread, sizeof(unsigned int));
thread_arg = calloc(nthread, sizeof(THARG));
for(ithread = 0; ithread < nthread; ithread++) {
/* Заполнить данными аргумент потока. */
thread_arg[ithread].thread_number = ithread;
Интервал:
Закладка: