Скотт Мейерс - Эффективное использование STL
- Название:Эффективное использование STL
- Автор:
- Жанр:
- Издательство:Питер
- Год:2002
- Город:СПб.
- ISBN:ISBN 5-94723-382-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Мейерс - Эффективное использование STL краткое содержание
В этой книге известный автор Скотт Мейерс раскрывает секреты настоящих мастеров, позволяющие добиться максимальной эффективности при работе с библиотекой STL.
Во многих книгах описываются возможности STL, но только в этой рассказано о том, как работать с этой библиотекой. Каждый из 50 советов книги подкреплен анализом и убедительными примерами, поэтому читатель не только узнает, как решать ту или иную задачу, но и когда следует выбирать то или иное решение — и почему именно такое.
Эффективное использование STL - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
•Некоторым версиям insert и erase при вызове должен передаваться тип iterator. Const- и reverse-итераторы им не подходят.
•Автоматическое преобразование const-итератора в iterator невозможно, а методика получения iterator на основании const_iterator (совет 27) применима не всегда, да и эффективность ее не гарантируется.
•Преобразование reverse_iterator в iterator может требовать дополнительной регулировки итератора. В совете 28 рассказано, когда и почему возникает такая необходимость.
Из сказанного следует однозначный вывод: если вы хотите работать с контейнерами просто и эффективно и по возможности застраховаться от нетривиальных ошибок, выбирайте iterator вместо его cons t- и reverse-аналогов.
На практике выбирать обычно приходится между iterator и const_iterator . Выбор между iterator и reverse_iterator часто происходит помимо вашей воли — все зависит от того, в каком порядке должны перебираться элементы контейнера (в прямом или в обратном). А если после выбора reverse_iterator потребуется вызвать функцию контейнера, требующую iterator, вызовите функцию base (возможно, с предварительной регулировкой смещения — см. совет 28).
При выборе между iterator и const_iterator рекомендуется выбирать iterator даже в том случае, если можно обойтись const_iterator, а использование iterator не обусловлено необходимостью вызова функции контейнера. В частности, немало хлопот возникает при сравнениях iterator с const_iterator. Думаю, вы согласитесь, что следующий фрагмент выглядит вполне логично:
typedef deque IntDeque;// Определения типов
typedef IntDeque:iterator Iter;// упрощают работу
typedef IntDeque::const_iterator Constlter; // с контейнерами STL
// и типами итераторов
iter i;
Constlter ci:
// i и ci указывают на элементы // одного контейнера
if (i=ci)...// Сравнить iterator
//c const_iterator
В данном примере происходит обычное сравнение двух итераторов контейнера, подобные сравнения совершаются в STL сплошь и рядом. Просто один объект относится к типу iterator, а другой — к типу const_iterator. Проблем быть не должно — iterator автоматически преобразуется в const_iterator , и в сравнении участвуют два const_iterator.
Именно это и происходит в хорошо спроектированных реализациях STL, но в некоторых случаях приведенный фрагмент не компилируется. Причина заключается в том, что такие реализации объявляют operator = функцией класса const_iterator вместо внешней функции. Впрочем, вас, вероятно, больше интересуют не корни проблемы, а ее решение, которое заключается в простом изменении порядка итераторов:
if (c=i)...// Обходное решение для тех случаев,
// когда приведенное выше сравнение не работает
Подобные проблемы возникают не только при сравнении, но и вообще при смешанном использовании iterator и const_iterator (или reverse_iterator и const_ reverse_iterator) в одном выражении. например, при попытке вычесть один итератор произвольного доступа из другого:
if (i-ci>=3)... // Если i находится минимум в трех позициях после ci...
ваш (правильный) код будет несправедливо отвергнут компилятором, если итераторы относятся к разным типам. Обходное решение остается прежним (перестановка i
и ci
), но в этом случае приходится учитывать, что i-ci
не заменяется на ci-i
:
if (c+3<=i)... // Обходное решение на случай, если
// предыдущая команда не компилируется
Простейшая страховка от подобных проблем заключается в том, чтобы свести к минимуму использование разнотипных итераторов, а это в свою очередь подсказывает, что вместо const_iterator следует использовать iterator. На первый взгляд отказ от const_iterator только для предотвращения потенциальных недостатков реализации (к тому же имеющих обходное решение) выглядит неоправданным, но с учетом особого статуса iterator в некоторых функциях контейнеров мы неизбежно приходим к выводу, что итераторы const_iterator менее практичны, а хлопоты с ними иногда просто не оправдывают затраченных усилий.
Совет 27. Используйте distance и advance для преобразования const_iterator в iterator
Как было сказано в совете 26, некоторые функции контейнеров, вызываемые с параметрами-итераторами, ограничиваются типом iterator; const_iterator им не подходит. Что же делать, если имеется const_iterator и вы хотите вставить новый элемент в позицию контейнера, обозначенную этим итератором? Const_iterator необходимо каким-то образом преобразовать в iterator, и вы должны принять в этом активное участие, поскольку, как было показано в совете 26, автоматического преобразования const_iterator в iterator не существует.
Я знаю, о чем вы думаете. «Если ничего не помогает, берем кувалду», не так ля? В мире С++ это может означать лишь одно: преобразование типа. Стыдитесь. И где вы набрались таких мыслей?
Давайте разберемся с вредным заблуждением относительно преобразования типа. Посмотрим, что происходит при преобразовании const_iterator в iterator:
typedef deque IntDeque:// Вспомогательные определения типов
typedef IntDeque::iterator Iter;
typedef IntDeque::const_iterator Constlter;
Constlter ci
// ci - const iterator
Iter i(ci);// Ошибка! He существует автоматического
// преобразования const_iterator // в iterator
Iter i(const_cast(ci)): // Ошибка! Преобразование const_iterator
// в iterator невозможно!
В приведенном примере используется контейнер deque, но аналогичный результат будет получен и для list, set, muliset, mulimap
и хэшированных контейнеров, упоминавшихся в совете 25. Возможно, строка с преобразованием будет откомпилирована для vector и string, но это особые случаи, которые будут рассмотрены ниже.
Почему же для этих типов контейнеров преобразование не компилируется? Потому что iterator
и const_iterator
относятся к разным классам, и сходства между ними не больше, чем между string
и complex
. Попытка преобразования одного типа в другой абсолютно бессмысленна, поэтому вызов const_cast
будет отвергнут. Попытки использования static_cast
, reintepreter_cast
и преобразования в стиле С приведут к тому же результату.
Впрочем, некомпилируемое преобразование все же может откомпилироваться, если итераторы относятся к контейнеру vector
или string. Это объясняется тем, что в реализациях данных контейнеров в качестве итераторов обычно используются указатели. В этих реализациях vector::iterator
является определением типа для Т*, vector:: const_iterator
— для const Т*
, string::iterator
— для char*,
а string:: const_iterator
— для const char*
. В реализациях данных контейнеров преобразование const_iterator
в iterator
вызовом const_cast
компилируется и даже правильно работает, поскольку оно преобразует const Т*
в Т*
. Впрочем, даже в этих реализациях reverse_iterator
и const_reverse_iterator
являются полноценными классами, поэтому const_cast не позволяет преобразовать const_reverse_iterator
в reverse_iterator
. Кроме того, как объясняется в совете 50, даже реализации, в которых итераторы контейнеров vector и string представлены указателями, могут использовать это представление лишь при компиляции окончательной (release) версии. Все перечисленные факторы приводят к мысли, что преобразование const-итераторов в итераторы не рекомендуется и для контейнеров vector и string, поскольку переносимость такого решения будет сомнительной.
Интервал:
Закладка: