Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Тут можно читать онлайн Е. Миркес - Учебное пособие по курсу «Нейроинформатика» - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Учебное пособие по курсу «Нейроинформатика»
  • Автор:
  • Жанр:
  • Издательство:
    КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
  • Год:
    2002
  • Город:
    Красноярск
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание

Учебное пособие по курсу «Нейроинформатика» - описание и краткое содержание, автор Е. Миркес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)

Учебное пособие по курсу «Нейроинформатика» - читать книгу онлайн бесплатно, автор Е. Миркес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подводя итоги, можно сказать, что все сети ассоциативной памяти типа (2) можно получить, комбинируя следующие преобразования:

1. Произвольное преобразование. Например, переход к автокорреляторам, позволяющий объединять в один выходной образ все образы, отличающиеся только положением в рамке.

2. Тензорное преобразование, позволяющее сильно увеличить способность сети запоминать и точно воспроизводить эталоны.

3. Переход к ортогональному проектору, снимающий зависимость надежности работы сети от степени коррелированности образов.

Наиболее сложная сеть будет иметь вид:

(12)

где r ij -1— элементы матрицы, обратной матрице Грама системы векторов { F ( x i )} ⊗k, F(x) — произвольное преобразование.

Возможно применение и других методов предобработки. Некоторые из них рассмотрены в работах [68, 91, 278]

Численный эксперимент

Работа ортогональных тензорных сетей при наличии помех сравнивалась с возможностями линейных кодов, исправляющих ошибки. Линейным кодом, исправляющим k ошибок, называется линейное подпространство в n- мерном пространстве над GF 2, все вектора которого удалены друг от друга не менее чем на 2 k +1. Линейный код называется совершенным, если для любого вектора n- мерного пространства существует кодовый вектор, удаленный от данного не более, чем на k . Тензорной сети в качестве эталонов подавались все кодовые векторы избранного для сравнения кода. Численные эксперименты с совершенными кодами показали, что тензорная сеть минимально необходимой валентности правильно декодирует все векторы. Для несовершенных кодов картина оказалась хуже — среди устойчивых образов тензорной сети появились «химеры» — векторы, не принадлежащие множеству эталонов.

Таблица 3. Результаты численного эксперимента. МР — минимальное расстояние между эталонами, ЧЭ — число эталонов

Размерность Число векторов МР ЧЭ Валентность Число химер Число ответов После обработки сетью расстояние до правильного ответа стало
верн. неверн. меньше то же больше
1 10 1024 3 64 3,5 896 128 896 0 856 0
2 7,21 384 640 384 0 348 0
3 10 1024 5 8 3 260 464 560 240 260 60
4 5,15 230 494 530 240 230 60
5 17,21 140 532 492 240 182 70
6 15 32768 7 32 3 15456 17312 15456 0 15465 0
7 5,21 14336 18432 14336 0 14336 0

В случае n= 10, k =1 (см. табл. 3 и 4, строка 1) при валентностях 3 и 5 тензорная сеть работала как единичный оператор — все входные вектора передавались на выход сети без изменений. Однако уже при валентности 7 число химер резко сократилось и сеть правильно декодировала более 60% сигналов. При этом были правильно декодированы все векторы, удаленные от ближайшего эталона на расстояние 2, а часть векторов, удаленных от ближайшего эталона на расстояние 1, остались химерами. В случае n= 10, k =2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n =15, k =3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.

Таблица 4. Результаты численного эксперимента

Число химер, удаленных от ближайшего эталона на: Число неверно распознанных векторов, удаленных от ближайшего эталона на:
1 2 3 4 5 1 2 3 4 5
1 640 256 0 0 0 896 0 0 0 0
2 384 0 0 0 0 384 0 0 0 0
3 0 210 50 0 0 0 210 290 60 0
4 0 180 50 0 0 0 180 290 60 0
5 0 88 50 2 0 0 156 290 60 0
6 0 0 1120 13440 896 0 0 1120 13440 896
7 0 0 0 13440 896 0 0 0 13440 896

Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.

Доказательство теоремы

В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k- х тензорных степеней эталонов.

При построении тензорных сетей используются тензоры валентности k следующего вида:

(13)

где a jn- мерные вектора над полем действительных чисел.

Если все вектора a i=a , то будем говорить о k- й тензорной степени вектора a , и использовать обозначение a ⊗k. Для дальнейшего важны следующие элементарные свойства тензоров вида (13).

1. Пусть и , тогда скалярное произведение этих векторов может быть вычислено по формуле

(14)

Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.

2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:

(15)

Доказательство непосредственно вытекает из свойства 1.

3. Если вектора a и b ортогональны, то есть ( a , b ) = 0, то и их тензорные степени любой положительной валентности ортогональны.

Доказательство вытекает из свойства 2.

4. Если вектора a и b коллинеарны, то есть b = λa , то a ⊗k= λ ka ⊗k.

Следствие.Если множество векторов содержит хотя бы одну пару противоположно направленных векторов, то система векторов будет линейно зависимой при любой валентности k .

5. Применение к множеству векторов невырожденного линейного преобразования Bв пространстве R nэквивалентно применению к множеству векторов линейного невырожденного преобразования, индуцированного преобразованием B, в пространстве .

Сюръективным мультииндексом α( L) над конечным множеством Lназовем k- мерный вектор, обладающий следующими свойствами:

1. для любого i Lсуществует j ∈{1, …, k } такое, что α j=i ;

2. для любого j ∈{1, …, k } существует iLтакое, что α j=i .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учебное пособие по курсу «Нейроинформатика» отзывы


Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x