Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Тут можно читать онлайн Е. Миркес - Учебное пособие по курсу «Нейроинформатика» - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Учебное пособие по курсу «Нейроинформатика»
  • Автор:
  • Жанр:
  • Издательство:
    КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
  • Год:
    2002
  • Город:
    Красноярск
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание

Учебное пособие по курсу «Нейроинформатика» - описание и краткое содержание, автор Е. Миркес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)

Учебное пособие по курсу «Нейроинформатика» - читать книгу онлайн бесплатно, автор Е. Миркес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Третий рисунок — первый класс разбит на два. Результат классификации на четыре класса. Плотности увеличились. Разбиение признано хорошим.

Четвертый рисунок — первый класс разбит на два. Результат классификации на пять классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к третьему рисунку.

Пятый рисунок — второй класс разбит на два. Результат классификации на пять классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к третьему рисунку.

Шестой рисунок — третий класс разбит на два. Результат классификации на пять классов. Плотности увеличились. Разбиение признано хорошим.

Седьмой рисунок — первый класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Восьмой рисунок — второй класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Девятый рисунок — третий класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Десятый рисунок — четвертый класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Одинадцатый рисунок — пятый класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Двенадцатый рисунок (совпадает с шестым) — окончательный результат.

Рис. 19. Результат применения критерия плотности классов для определения числа классов к множеству точек, приведенному на рис. 10б.

На рис. 19 приведен результат применения плотностного критерия определения числа классов для множества точек, приведенного на рис. 10б.

Лекции 4, 5 и 6. Нейронные сети ассоциативной памяти, функционирующие в дискретном времени

Нейронные сети ассоциативной памяти — сети восстанавливающие по искаженному и/или зашумленному образу ближайший к нему эталонный. Исследована информационная емкость сетей и предложено несколько путей ее повышения, в том числе — ортогональные тензорные (многочастичные) сети. Описаны способы предобработки, позволяющие конструировать нейронные сети ассоциативной памяти для обработки образов, инвариантной относительно групп преобразований. Описан численный эксперимент по использованию нейронных сетей для декодирования различных кодов. Доказана теорема об информационной емкости тензорных сетей.

Описание задачи

Прежде чем заниматься конструированием сетей ассоциативной памяти необходимо ответить на следующие два вопроса: «Как устроена ассоциативная память?» и «Какие задачи она решает?». Когда мы задаем эти вопросы, имеется в виду не устройство отделов мозга, отвечающих за ассоциативную память, а наше представление о макропроцессах, происходящих при проявлении ассоциативной памяти.

Принято говорить, что у человека возникла ассоциация, если при получении некоторой неполной информации он может подробно описать объект, к которому по его мнению относится эта информация. Достаточно хорошим примером может служить описание малознакомого человека. К примеру, при высказывании: «Слушай, а что за парень, с которым ты вчера разговаривал на вечеринке, такой высокий блондин?»— у собеседника возникает образ вчерашнего собеседника, не ограничивающийся ростом и цветом волос. В ответ на заданный вопрос он может рассказать об этом человеке довольно много. При этом следует заметить, что содержащейся в вопросе информации явно недостаточно для точной идентификации собеседника. Более того, если вчерашний собеседник был случайным, то без дополнительной информации его и не вспомнят.

Подводя итог описанию можно сказать, что ассоциативная память позволяет по неполной и даже частично недостоверной информации восстановить достаточно полное описание знакомого объекта. Слово знакомого является очень важным, поскольку невозможно вызвать ассоциации с незнакомыми объектами. При этом объект должен быть знаком тому, у кого возникают ассоциации.

Одновременно рассмотренные примеры позволяют сформулировать решаемые ассоциативной памятью задачи:

Соотнести входную информацию со знакомыми объектами, и дополнить ее до точного описания объекта.

Отфильтровать из входной информации недостоверную, а на основании оставшейся решить первую задачу.

Очевидно, что под точным описанием объекта следует понимать всю информацию, которая доступна ассоциативной памяти. Вторая задача решается не поэтапно, а одновременно происходит соотнесение полученной информации с известными образцами и отсев недостоверной информации.

Нейронным сетям ассоциативной памяти посвящено множество работ (см. например, [75, 77, 80, 86, 114, 130, 131, 153, 231, 247, 296, 312, 329]). Сети Хопфилда являются основным объектом исследования в модельном направлении нейроинформатики.

Формальная постановка задачи

Пусть задан набор из m эталонов — n- мерных векторов { x i }. Требуется построить сеть, которая при предъявлении на вход произвольного образа — вектора x — давала бы на выходе «наиболее похожий» эталон.

Всюду далее образы и, в том числе, эталоны — n- мерные векторы с координатами ±1. Примером понятия эталона «наиболее похожего» на x может служить ближайший к x вектор x i. Легко заметить, что это требование эквивалентно требованию максимальности скалярного произведения векторов x и x i :

Первые два слагаемых в правой части совпадают для любых образов x и x i , так как длины всех векторов-образов равны √ n. Таким образом, задача поиска ближайшего образа сводится к поиску образа, скалярное произведение с которым максимально. Этот простой факт приводит к тому, что сравнивать придется линейные функции от образов, тогда как расстояние является квадратичной функцией.

Сети Хопфилда

Наиболее известной сетью ассоциативной памяти является сеть Хопфилда [312]. В основе сети Хопфилда лежит следующая идея — запишем систему дифференциальных уравнений для градиентной минимизации «энергии» H (функции Ляпунова). Точки равновесия такой системы находятся в точках минимума энергии. Функцию энергии будем строить из следующих соображений:

1. Каждый эталон должен быть точкой минимума.

2. В точке минимума все координаты образа должны иметь значения ±1.

Функция

не удовлетворяет этим требованиям строго, но можно предполагать, что первое слагаемое обеспечит притяжение к эталонам (для вектора x фиксированной длины максимум квадрата скалярного произведения ( x, x i )² достигается при x= x i …), а второе слагаемое — приблизит к единице абсолютные величины всех координат точки минимума). Величина a характеризует соотношение между этими двумя требованиями и может меняться со временем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учебное пособие по курсу «Нейроинформатика» отзывы


Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x