Стивен Барретт - Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
- Название:Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
- Автор:
- Жанр:
- Издательство:Издательский дом «ДМК-пресс»
- Год:2007
- Город:Москва
- ISBN:5-9706-0034-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Барретт - Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С краткое содержание
В книге последовательно рассматриваются все этапы создания встраиваемых систем на микроконтроллерах с применением современных технологий проектирования. Задумав эту книгу, авторы поставили перед собой задачу научить читателя искусству создания реальных устройств управления на однокристальных микроконтроллерах.
Издание содержит материал, охватывающий все вопросы проектирования, включает множество заданий для самостоятельной работы, примеры программирования, примеры аппаратных решений и эксперименты по исследованию работы различных подсистем микроконтроллеров.
Данная книга является прекрасным учебным пособием для студентов старших курсов технических университетов, которые предполагают связать свою профессиональную деятельность с проектированием и внедрением встраиваемых микропроцессорных систем. Книга также будет полезна разработчикам радиоэлектронной аппаратуры на микроконтроллерах.
Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В этом разделе, мы описываем разработку и построение встроенной системы управления для лазерного проектора. Вы вероятно видели такую систему, на концерте или в планетарии. Аналогичный подход может быть использован при разработке точного лазера для медицинских целей или для технологических установок, например, чтобы управлять лазером для точной гравировки.
7.2.1. Описание проекта
Система имеет семь образцов изображений, которые проектируются лазером на стену или киноэкран. Мы выбираем один из них для проекции, нажав соответствующую кнопку. Как только изображение выбрано, подсвечивается светодиод, соответствующий выбранному варианту. Затем система управления открывает лазерный затвор, позволяя лазерному лучу пройти на пару гальванометрических зеркал. Микроконтроллер 68HC12 генерирует сигналы управления, позволяющие изменять угол поворота зеркал, чтобы создать предварительно записанное в памяти изображение с помощью внешних по отношению к МК цифро-аналоговых преобразователей (ЦАП). Выбранное изображение выводится однократно при каждом нажатии кнопки. Конструкция системы приведена на рис. 7.8.

Рис.7.8. Встроенная система управления лазерным проектором
7.2.2. Подсистемы 68HC12 используемые в проекте
Основываясь на кратком описании проекта, мы можем определить периферийные модули МК 68HC12 необходимо использовать и внешние устройства которые которые будут использоваться для решения нашей задачи:
• Восемь двухпозиционных переключателей с аппаратной противодребезговой защитой, подключены к порту ввода МК;
• Восемь светодиодных индикаторов для логических выходов с тремя состояниями, подключены к порту вывода МК;
• Двухканальный ЦАП, связанный с МК по последовательному интерфейсу SPI, или два порта МК 68HC12, конфигурированных как выходные;
• Лазерный источник;
• Затвор и драйвер затвора;
• Два гальванометрических зеркала.
7.2.3. Описание некоторых компонентов системы
Как и прежде, рассмотрим доступные инструментальные средства из нашего инструментального ящика, позволяющие выполнить все требуемые функции.
В нашем сундучке инструментов уже имеются следующие компоненты:
• Противодребезговые переключатели;
• Восемь светодиодных индикаторов с тремя состояниями;
• ЦАП;
Однако мы еще не рассматривали лазеры, лазерные зеркала, лазерные затворы и гальванометрические зеркала. Рассмотрим эти устройства. Мы рассмотрим также более подробно технологию ЦАП.

Рис. 7.9.Типичная схема подключения ЦАП MC1408P8 фирмы Motorola
Однако мы еще не рассматривали лазеры, лазерные зеркала, лазерные затворы и гальванометрические зеркала. Рассмотрим эти устройства. Мы рассмотрим также более подробно технологию ЦАП.
Цифро-аналоговые преобразователи (ЦАП). В главе 6 мы обсуждали основы цифро-аналоговых преобразователей (ЦАП). Поскольку МК 68HC12 не имеют в своем составе модуля ЦАП, необходимо воспользоваться внешними ИС ЦАП. Для данного проекта нам нужны фактически два отдельных канала ЦАП, чтобы управлять X и Y каналами гальванометров. Существует много различных ИС ЦАП, совместимых с 68HC12 и удовлетворяющих требованиям данного проекта. Их можно разделить на две категориии: ЦАП с последовательными или с параллельными входами. ЦАП с последовательными входами обычно подключается к МК с помощью интерфейса SPI. Читатель, интересующийся более подробным описанием этого типа интерфейса может обратиться книге Pack and Barrett [2002, гл. 10]. В этом примере, мы используем два 8-разрядных ЦАП с параллельными входами. Имеется широкое разнообразие таких ЦАП. В этом проекте мы используем ИС MC1408P8 фирмы Motorola. Типовая схема подключения ЦАП MC1408P8 к порту вывода МК показана на рис. 7.9. Выходное напряжение ЦАП определяется величиной опорного напряжения Vref, коэффициентом обратной связи операционного усилителя (определяется R14 и Ro) и цифровым кодом на входах A8…A1. Зависимость напряжения на выходе ЦАП в функции перечисленных параметров приведена на рис. 7.9. Величина опорного напряжения и номиналы резисторов определяются схемой подключения и не могут быть изменены в процессе эксплуатации. А вот кодовая комбинация на входах A8…A1 постоянно изменяется в процессе управления. И в соответствии с передаточной характеристикой ЦАП изменяется напряжение на выходе V0. Электрические характеристики цифровых входов ЦАП (A8…A1) позволяют выполнить их прямое подключение к выводам порта МК 68HC12. В соответствие с техническими условиями необходимо, чтобы напряжение V0 изменялось в диапазоне ±1 В при изменении кода на входах A8…A1 от $FF. Данное требование может быть выполнено при следующих номиналах резисторов схемы и опорного напряжения ЦАП:
• V ref= 5,0 В
• R14=R15= 1 кОм
• R o= (2/5) R14 = 400 Ом
• R B= 2 (R14) = 2 кОм
Эти значения получены из решения уравнения для выходного напряжения, приведенного на рис. 7.9 для двух различных случаев: (1), когда выходное напряжение равно +1 В, и (2), когда выходное напряжение составляет 0 В; опорное напряжение V refудобно выбрать равным 5 В. Эти значения составляющих обеспечивают выходное напряжение –1,0 В для двоичного кода $00 и выходное напряжения 0,992 В для двоичного кода $FF. Двоичные коды, заключенные между этими крайними значениями кода, обеспечивают 256 значений аналогового выходного напряжения линейно изменяющегося от –1,0 до 0.992 В.
Лазеры.Лазер (слово получено из сокращения light amplification by stimulated emission of radiation — усилитель света на базе вынужденного излучения) представляет собой источник света с рядом специфических свойств и характеристик. Он, как считают, является монохроматическим (одна длина волны или очень узкий диапазон длин волн), когерентным (фронты волн находятся в фазе друг с другом), и нерасходящимся. Что же это означает? В основном, лазер обеспечивает одноцветный источник света с узким, подобным карандашу, лучом. Лазер с самого начала нашел применение фактически во всех областях промышленности и медицины [12]. Читателя, интересующегося более подробным знакомством с этой увлекательной темой, мы отсылаем к разделу «Что еще прочитать» в конце данной главы. Для рассматриваемого устройства, мы используем маломощный (менее 3 мВт) лазер в видимом диапазоне излучения. Лазеры этого типа доступны в нескольких различных исполнениях. Имеется ряд гелий-неоновых (HeNe) лазеров различных цветов. Однако газоразрядные трубки таких лазеров обычно имеют длину 25 см и диаметр 5 см. Более новая технология — твердотельный лазер с диодной накачкой (DPSS), маломощный лазер, для нескольких частот в видимой области. Его длина составляет приблизительно 5 см и диаметр 1,5 см, он питается от маленького выпрямителя [3]. Мы используем этот тип лазера для данного проекта. Эти лазеры достаточно просты в обращении. Вы подключаете их к сети, и сразу появляется луч.
Читать дальшеИнтервал:
Закладка: