Стивен Барретт - Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
- Название:Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
- Автор:
- Жанр:
- Издательство:Издательский дом «ДМК-пресс»
- Год:2007
- Город:Москва
- ISBN:5-9706-0034-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Барретт - Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С краткое содержание
В книге последовательно рассматриваются все этапы создания встраиваемых систем на микроконтроллерах с применением современных технологий проектирования. Задумав эту книгу, авторы поставили перед собой задачу научить читателя искусству создания реальных устройств управления на однокристальных микроконтроллерах.
Издание содержит материал, охватывающий все вопросы проектирования, включает множество заданий для самостоятельной работы, примеры программирования, примеры аппаратных решений и эксперименты по исследованию работы различных подсистем микроконтроллеров.
Данная книга является прекрасным учебным пособием для студентов старших курсов технических университетов, которые предполагают связать свою профессиональную деятельность с проектированием и внедрением встраиваемых микропроцессорных систем. Книга также будет полезна разработчикам радиоэлектронной аппаратуры на микроконтроллерах.
Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
V IH = 3,5 В, V IL = 1,0 В, I OH = –0,8 мА, I OL = 1,6 мА
V OH = 4,2 В, V OL = 0,4 В, I IH = 10 мкА, I IL = –10 мкА
Решение. Ход рассуждений при решении этой задачи аналогичен предыдущей.
• Сравним напряжения при высоком уровне выходного сигнала. Минимальная величина выходного напряжения логической 1 серии HC составляет V OH =4,2 В. Минимальный уровень входного напряжения логической 1 этих же элементов — V IH =3,5 В. Сравнивая эти числа, можно сделать вывод, что по напряжению высокого логического уровня элементы серии HC выполнены совместимыми, в чем и требовалось убедиться. Иного результата быть не может, иначе из элементов одной серии невозможно было бы создать схему.
• Максимальное значение выходного напряжения логического 0 для элементов серии HC составляет V OL =0,4 В. В то время как входное напряжение логического 0 сигналы для этих же элементов не должно быть ниже V OL =1,0 В. Поскольку V OL < V IL , ошибки распознавания низкого логического уровня быть не может. Следовательно, элементы серии HC совместимы сами с собой и по низкому логическому уровню также.
• Коэффициент разветвления в состоянии логической 1 равен:
K1 = I OH / I IH = 0,8 мА/10 мкА = 80
• Коэффициент разветвления в состоянии логического 0 равен:
K0 = I OL / I IL = 1,6 мА/10 мкА = 160
• Делаем вывод, что коэффициент разветвления серии элементов HC равен 80.
Итак, мы научились оценивать входные и выходные электрические характеристики логических элементов. На основе этих характеристик делать выводы о возможности подключения элементов различных серий друг к другу при составлении схемы какого-либо управляющего устройства. Далее мы рассмотрим различные интерфейсные компоненты, которые достаточно часто работают совместно с МК в микропроцессорных системах управления.
5.2. Устройства дискретного ввода: кнопки, переключатели, клавиатуры
Любая встраиваемая микропроцессорная система принимает данные из «внешнего мира», преобразует эти данные в управляющие воздействия, а затем «выдает» эти воздействия во внешний мир. Ни одна микропроцессорная система управления не обходится без механических переключателей, которые активируются пользователем, а также без различного рода устройств индикации, которые информируют пользователя о режимах работы самой системы и о состоянии объекта управления. В данном параграфе мы рассмотрим, как подключить к МК различные типы переключателей и простейшие светодиодные индикаторы. Несколько позже, в параграфе 5.6, мы подробно остановимся на вопросах сопряжения МК с жидкокристаллическим дисплеем (далее ЖК индикатор или ЖК дисплей).
5.2.1. Кнопки и переключатели
На рис. 5.4,а приведена схема подключения одиночного механического переключателя к МК. Механическая часть переключателя может быть выполнена таким образом, что его замкнутое состояние удерживается только тогда, когда человек нажимает на клавишу. Такой переключатель называют кнопкой. Другие переключатели обладают свойством удерживать замкнутое и разомкнутое состояние контактов при отсутствии внешнего воздействия. Последнее потребуется лишь для того, чтобы изменить состояние переключателя с разомкнутого на замкнутое и наоборот. Такие переключатели называются переключателями с фиксацией положения или тумблерами.

a) Подключение кнопки к МК НС12

б) Подключение группы из 8 DIP-переключателей
Рис. 5.4.Примеры схем подключения механических переключателей к МК
Возвратимся к нашей схеме (рис. 5.4,а). Когда клавиша отжата, переключатель находится в разомкнутом состоянии, и на входе МК формируется высокий логический уровень сигнала. Когда клавиша нажата, переключатель замыкает контакты, вывод МК подсоединяется к потенциалу общего провода системы GND, и на входе МК формируется логический 0. Резистор R = 10 кОм ограничивает силу тока в цепи переключателя.
Если бы переключатель был идеальным, то переход потенциала вывода МК из состояния 1 в состояние 0 при нажатии клавиши происходил бы мгновенно. На самом деле это не так. Переход механического переключателя из одного состояния в другое сопровождается механическим дребезгом контактов. Эффект механического дребезга состоит в том, что при смене состояния, например, с разомкнутого на замкнутое, контакты, прежде чем перейти из установившегося разомкнутого состояния в установившееся замкнутое, многократно замыкаются и размыкаются. Тогда, установив щуп осциллографа на вход МК, мы увидим сначала высокий уровень сигнала, затем многократное нерегулярное во времени переключение с 1 на 0, и, наконец, установится низкий уровень сигнала. Частота работы МК (от единиц до сотен МГц) чрезвычайно высока по сравнению с временами переключения механических контакторов (десятки–сотни мс). Поэтому механический дребезг контакта может быть воспринят управляющей программой как его многократное переключение. Существуют аппаратные и программные методы защиты от эффекта дребезга контактов. Один из программных методов заключается в том, что после обнаружения первого изменения логического уровня сигнала программа формирует задержку на 100-200 мс. В течение этого времени дребезг контактов прекращается, и переключатель переходит в новое устойчивое состояние. Мы рассмотрим аппаратные и программные методы противодребезгвой защиты в параграфе 5.5.
5.2.2. DIP переключатели
На рис. 5.4,б показана схема, в которой мы распространили идею подключения одного механического переключателя к МК сразу на восемь переключателей. Эти микропереключатели смонтированы на заводе-производителе в корпусе, который по размерам и расположению выводов совпадает с корпусом типа DIP (Dual In-line Package) для интегральных схем. Поэтому их называют DIP-переключатели.
Каждый переключатель из блока подсоединен к отдельному выводу порта МК. Так же, как и в предыдущем случае, ток цепи каждого переключателя ограничивается резистором. Для блока из восьми переключателей потребуется восемь резисторов. Для уменьшения габаритов печатной платы изделия целесообразно использовать сборку резисторов в одном корпусе. Однако возможно использование и одиночных резисторов.
В параграфе 5.8 мы рассмотрим пример использования подобной сборки DIP-переключателей для выбора режима работы микропроцессорной системы.
5.2.3. Клавиатуры
Во многих приложениях микропроцессорные системы требуют ввода цифровой и буквенной информации. Для таких случаев могут быть использованы блоки из нескольких кнопок, которые объединены конструктивно и соединены электрически по стандартной матричной схеме. Такие блоки называют клавиатурами. На рис. 5.5 показана клавиатура из 16 клавиш, которая позволяет вводить данные в микропроцессорную систему в шестнадцатеричном коде. Изучим представленную на рис. 5.5 схему соединения МК с клавиатурой подробно.
Читать дальшеИнтервал:
Закладка: