Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Название:Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Автор:
- Жанр:
- Издательство:Литагент «ДМК»233a80b4-1212-102e-b479-a360f6b39df7
- Год:2006
- Город:Москва
- ISBN:5-94074-304-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ краткое содержание
Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.
Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• Открытое наследование означает «является». Все, что применимо к базовому классу, должно быть применимо также и производным от него, потому что каждый объект производного класса является также объектом базового класса.
Правило 33: Не скрывайте унаследованные имена
Шекспир много размышлял об именах. Он писал: «Что в имени тебе? Роза пахнет розой, хоть розой назови ее, хоть нет». И еще писал бард: «Кто доброе мое похитит имя, несчастным сделает меня вовек…» Правильно. И это заставляет нас обратить взор на унаследованные имена в C++.
Вообще-то эта тема относится не столько к наследованию, сколько к областям видимости. Все мы знаем, что в таком коде:
int x; // глобальная переменная
void someFunc()
{
double x; // локальная переменная
std::cin >> x; // прочитать новое значение локальной переменной x
}
имя x в предложении считывания относится к локальной, а не к глобальной переменной, потому что имена во вложенной области видимости скрывают («затеняют») имена из внешних областей. Мы можем представить эту ситуацию визуально:

Когда компилятор встречает имя x внутри функции someFunc, он смотрит, определено ли что-то с таким именем в локальной области видимости. Если да, то объемлющие области видимости не просматриваются. В данном случае имя x в функции someFunc принадлежит переменной типа double, а глобальная переменная с тем же именем x имеет тип int, но это несущественно. Правила сокрытия имен в C++ предназначены для одной-единственной цели: скрывать имена. Относятся ли одинаковые имена к объектам одного или разных типов, не имеет значения. В нашем примере переменная x типа double скрывает переменную x типа int.
Вернемся к наследованию. Мы знаем, что когда находимся внутри функции-члена производного класса и ссылаемся на что-то из базового класса (например, функцию-член, typedef или член данных), компилятор сможет найти то, на что мы ссылаемся, потому что производные классы наследуют свойства, объявленные в базовых классах. Механизм основан на том, что область видимости производного класса вложена в область видимости базового класса. Например:

class Base {
private:
int x;
public:
virtual void mf1() = 0;
virtual void mf2();
void mf3();
...
};
class Derived: public Base {
public:
virtual void mf1()
void mf4();
...
};
В этом примере встречаются как открытые, так и закрытые имена, как имена членов данных, так и функций-членов. Одна из функций-членов – чисто виртуальная, другая – просто виртуальная, а третья – невиртуальная. Это я к тому, что мы говорим именно об именах, а не о чем-то другом. Я мог бы включить в пример еще имена типов, например перечислений, вложенных классов и typedef. В данном контексте важно лишь то, что все это имена. Что они именуют – несущественно. В примере используется одиночное наследование, но, поняв, что происходит при одиночном наследовании, легко будет разобраться и в том, как C++ ведет себя при множественном наследовании.
Предположим, что функция-член mf4 в производном классе реализована примерно так:
void Derived::mf4()
{
...
mf2();
...
}
Когда компилятор видит имя mf2, он должен понять, на что оно ссылается. Для этого в различных областях видимости производится поиск имени mf2. Сначала оно ищется в локальной области видимости (то есть внутри mf4), но там такого имени нет. Тогда просматривается объемлющая область видимости, то есть область видимости класса Derived. И здесь такое имя отсутствует, поэтому компилятор переходит к следующей область видимости, которой является базовый класс. И находит там нечто по имени mf2, после чего поиск завершается. Если бы mf2 не было и в классе Base, то поиск продолжился бы сначала в пространстве имен, содержащем Base, если таковое имеется, и, наконец, в глобальной области видимости.
Данное мной описание правильно, хотя и исчерпывает всю сложность процесса поиска имен в C++. Наша цель, однако, не в том, чтобы узнать о поиске имен столько, чтобы самостоятельно написать компилятор. Достаточно будет, если мы сумеем избежать неприятных сюрпризов, а для этого изложенной информации должно хватить.
Снова вернемся к предыдущему примеру, но на этот раз перегрузим функции mf1 и mf3, а также добавим версию mf3 в класс Derived. Как объясняется в правиле 36, перегрузка mf3 в производном классе Derived (когда наследуется невиртуальная функция) сама по себе подозрительна, но чтобы лучше разобраться с видимостью имен, закроем на это глаза.

class Base {
private:
int x;
public:
virtual void mf1() = 0;
virtual void mf1(int);
virtual void mf2();
void mf3();
void mf3(double);
...
};
class Derived: public Base {
public:
virtual void mf1()
void mf3();
void mf4();
...
};
Этот код приводит к поведению, которое удивит любого программиста C++, впервые столкнувшегося с ним. Основанное на областях видимости правило сокрытия имен никуда не делось, поэтому все функции с именами mf1 и mf3 в базовом классе окажутся скрыты одноименными функциями в производном классе. С точки зрения поиска имен, Base::mf1 и Base::mf3 более не наследуются классом Derived!
Derived d;
int x;
...
d.mf1(); // правильно, вызывается Derived::mf1
d.mf1(x); // ошибка! Derived::mf1 скрывает Base::mf1
d.mf2(); // правильно, вызывается Base::mf2
d.mf3(); // правильно, вызывается Derived::mf3
d.mf3(x); // ошибка! Derived::mf3 скрывает Base::mf3
Как видите, это касается даже тех случаев, когда функции в базовом и производном классах принимают параметры разных типов, независимо от того, идет ли речь о виртуальных или невиртуальных функциях. И точно так же, как в нашем первом примере double x внутри функции someFunc скрывает int x из глобального контекста, так и здесь функция mf3 в классе Derived скрывает функцию mf3 из класса Base, которая имеет другой тип.
Обоснование такого поведения в том, что оно не дает нечаянно унаследовать перегруженные функции из базового класса, расположенного много выше в иерархии наследования, упрятанной в библиотеке или каркасе приложения. К сожалению, обычно вы хотите унаследовать перегруженные функции. Фактически если вы используете открытое наследование и не наследуете перегруженные функций, то нарушаете семантику отношения «является» между базовым и производным классами, которое в правиле 32 провозглашено фундаментальным принципом открытого наследования. То есть это тот случай, когда вы почти всегда хотите обойти принятое в C++ по умолчанию правило сокрытия имен.
Читать дальшеИнтервал:
Закладка: