Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Название:Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Автор:
- Жанр:
- Издательство:Литагент «ДМК»233a80b4-1212-102e-b479-a360f6b39df7
- Год:2006
- Город:Москва
- ISBN:5-94074-304-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ краткое содержание
Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.
Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Сегодня C++ – это язык программирования с несколькими парадигмами, поддерживающий процедурное, объектно-ориентированное, функциональное, обобщенное и метапрограммирование. Эти мощь и гибкость делают C++ несравненным инструментом, однако могут привести в замешательство. У любой рекомендации по «правильному применению» есть исключения. Как найти смысл в таком языке?
Лучше всего воспринимать C++ не как один язык, а как конгломерат взаимосвязанных языков. В пределах отдельного подъязыка правила достаточно просты, понятны и легко запоминаются. Однако когда вы переходите от одного подъязыка к другому, правила могут изменяться. Чтобы увидеть смысл в C++, вы должны распознавать его основные подъязыки. К счастью, их всего четыре:
• C.В глубине своей C++ все еще основан на C. Блоки, предложения, препроцессор, встроенные типы данных, массивы, указатели и т. п. – все это пришло из C. Во многих случаях C++ предоставляет для решения тех или иных задач более развитые механизмы, чем C (пример см. в правиле 2 – альтернатива препроцессору и 13 – применение объектов для управления ресурсами), но когда вы начнете работать с той частью C++, которая имеет аналоги в C, то поймете, что правила эффективного программирования отражают более ограниченный характер языка C: никаких шаблонов, никаких исключений, никакой перегрузки и т. д.
• Объектно-ориентированный C++.Эта часть C++ представляет то, чем был «C с классами», включая конструкторы и деструкторы, инкапсуляцию, наследование, полиморфизм, виртуальные функции (динамическое связывание) и т. д. Это та часть C++, к которой в наибольшей степени применимы классические правила объектно-ориентированного проектирования.
• C++ с шаблонами.Эта часть C++ называется обобщенным программированием, о ней большинство программистов знают мало. Шаблоны теперь пронизывают C++ снизу доверху, и признаком хорошего тона в программировании уже стало включение конструкций, немыслимых без шаблонов (например, см. правило 46 о преобразовании типов при вызовах шаблонных функций). Фактически шаблоны, благодаря своей мощи, породили совершенно новую парадигму программирования: метапрограммирование шаблонов (template metaprogramming – TMP). В правиле 48 представлен обзор TMP, но если вы не являетесь убежденным фанатиком шаблонов, у вас нет причин чрезмерно задумываться об этом. TMP не отнесешь к самым распространенным приемам программирования на C++.
• STL.STL – это, конечно, библиотека шаблонов, но очень специализированная. Принятые в ней соглашения относительно контейнеров, итераторов, алгоритмов и функциональных объектов великолепно сочетаются между собой, но шаблоны и библиотеки можно строить и по-другому. Работая с библиотекой STL, вы обязаны следовать ее соглашениям.
Помните об этих четырех подъязыках и не удивляйтесь, если попадете в ситуацию, когда соображения эффективности программирования потребуют от вас менять стратегию при переключении с одного подъязыка на другой. Например, для встроенных типов (в стиле C) передача параметров по значению в общем случае более эффективна, чем передача по ссылке, но если вы программируете в объектно-ориентированном стиле, то из-за наличия определенных пользователем конструкторов и деструкторов передача по ссылке на константу обычно становится более эффективной. В особенности это относится к подъязыку «C++ с шаблонами», потому что там вы обычно даже не знаете заранее типа объектов, с которыми имеете дело. Но вот вы перешли к использованию STL, и опять старое правило C о передаче по значению становится актуальным, потому что итераторы и функциональные объекты смоделированы через указатели C. (Подробно о выборе способа передачи параметров см. правило 20.)
Таким образом, C++ не является однородным языком с единственным набором правил. Это – конгломерат подъязыков, каждый со своими собственными соглашениями. Если вы будете помнить об этих подъязыках, то обнаружите, что понять C++ намного проще.
• Правила эффективного программирования меняются в зависимости от части C++, которую вы используете.
Правило 2: Предпочитайте const, enum и inline использованию #define
Это правило лучше было бы назвать «Компилятор предпочтительнее препроцессора», поскольку #define зачастую вообще не относят к языку C++. В этом и заключается проблема. Рассмотрим простой пример; попробуйте написать что-нибудь вроде:
#define ASPECT_RATIO 1.653
Символическое имя ASPECT_RATIO может так и остаться неизвестным компилятору или быть удалено препроцессором до того, как код поступит на обработку компилятору. Если это произойдет, то имя ASPECT_RATIO не попадет в таблицу символов. Поэтому в ходе компиляции вы получите ошибку (в сообщении о ней будет упомянуто значение 1.653, а не ASPECT_RATIO). Это вызовет путаницу. Если имя ASPECT_RATIO было определено в заголовочном файле, который писали не вы, то вы вообще не будете знать, откуда взялось значение 1.653, и на поиски ответа потратите много времени. Та же проблема может возникнуть и при отладке, поскольку выбранное вами имя будет отсутствовать в таблице символов.
Решение состоит в замене макроса константой:
const double AspectRatio = 1.653; // имена, записанные большими буквами,
// обычно применяются для макросов,
// поэтому мы решили его изменить
Будучи языковой константой, AspectRatio видима компилятору и, естественно, помещается в таблицу символов. К тому же в случае использования константы с плавающей точкой (как в этом примере) генерируется более компактный код, чем при использовании #define. Дело в том, что препроцессор, слепо подставляя вместо макроса ASPECT_RATIO величину 1.653, создает множество копий 1.653 в объектном коде, в то время как использование константы никогда не породит более одной копии этого значения.
При замене #define константами нужно помнить о двух особых случаях. Первый касается константных указателей. Поскольку определения констант обычно помещаются в заголовочные файлы (где к ним получает доступ множество различных исходных файлов), важно, чтобы сам указатель был объявлен с ключевым словом const, в дополнение к объявлению const того, на что он указывает. Например, чтобы объявить в заголовочном файле константную строку типа char*, слово const нужно написать дважды:
const char * const authorName = “Scott Meyers”;
Более подробно о сущности и применений слова const, особенно в связке с указателями, см. в правиле 3. Но уже сейчас стоит напомнить, что объекты типа string обычно предпочтительнее своих прародителей – строк типа char *, поэтому authorName лучше определить так:
const std::string authorName(“Scott Meyers”);
Второе замечание касается констант, объявляемых в составе класса. Чтобы ограничить область действия константы классом, необходимо сделать ее членом класса, и чтобы гарантировать, что существует только одна копия константы, требуется сделать ее статическим членом:
Читать дальшеИнтервал:
Закладка: