Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Название:Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Автор:
- Жанр:
- Издательство:Литагент «ДМК»233a80b4-1212-102e-b479-a360f6b39df7
- Год:2006
- Город:Москва
- ISBN:5-94074-304-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ краткое содержание
Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.
Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Основной инструмент для этого – анализ общности и изменчивости имен, но в самой этой идее нет ничего необычного. Даже если вы никогда в жизни не писали шаблонов, таким анализом вам приходится заниматься постоянно.
Когда вы пишете функцию и обнаруживаете, что некоторая часть ее реализации мало чем отличается от реализации другой функции, разве вы дублируете код? Конечно, нет. Вы исключаете общую часть из обеих функций, помещаете ее в третью, а первые две вызывают эту третью функцию. Иными словами, вы анализируете эти две функции на предмет выявления общих и отличающихся частей, перемещаете общие части в новую функцию, а отличающиеся части оставляете на месте. Аналогично, если вы пишете класс и выясняется, что некоторые части этого класса в точности совпадают с частями другого класса, вы не станете их дублировать, а просто вынесете общие части в новый класс, а затем воспользуетесь наследованием или композицией (см. правила 32, 38 и 39), предоставив исходному классу доступ к общим средствам. Отличающиеся части исходных классов остаются на месте.
При написании шаблонов выполняется такой же анализ, и способы борьбы с дублированием аналогичны. Однако имеются новые особенности. В нешаблонном коде дублирование видно сразу: трудно не заметить повторения кода в двух функциях или классах. В шаблонном коде дублирование не бросается в глаза: есть только одна копия исходного кода шаблона, поэтому вам нужно тренироваться, чтобы легко находить места, где в результате конкретизации шаблона может возникнуть дублирование.
Предположим, например, что вы хотите написать шаблон для квадратных матриц фиксированного размера, которые, помимо всего прочего, поддерживают операцию обращения матрицы.
template // шаблон матрицы размерностью n x n,
class SquareMatrix { // состоящей из объектов типа T;
public: // см. ниже информацию о параметре size_t
...
void invert(); // обращение матрицы на месте
};
Этот шаблон принимает параметр типа T, а также параметр типа size_t, не являющийся типом. Параметры, не являющиеся типами, используются реже, чем параметры-типы, но они совершенно законны и, как в данном примере, могут быть вполне естественными.
Теперь рассмотрим такой код:
SquareMatrix sm1;
...
sm1.invert(); // вызов SquareMatrix::invert()
SquareMatrix sm2;
...
sm2.invert(); // вызов SquareMatrix::invert()
Здесь будут конкретизированы две копии функции invert. Они не идентичны, потому что одна из них работает с матрицами 5x5, а другая – с матрицами 10x10, но во всем остальном, кроме констант 5 и 10, эти функции ничем не отличаются. Это – классический пример разбухания кода в результате применения шаблонов.
Что вы делаете, когда есть две функции, абсолютно одинаковые, за исключением того, что в одной используется константа 5, а в другой – 10? Естественно, вы создаете функцию, которая принимает параметр, а затем вызываете ее, один раз передавая в качестве параметра 5, а другой раз – 10. Вот первая попытка проделать тот же трюк в реализации шаблона SquareMatrix:
template // базовый класс, не зависящий
class SquareMatrixBase { // от размерности матрицы
protected:
...
void invert(std::size_t matrixSize); // обратить матрицу заданной
... // размерности
};
template
class SquareMatrix: private SquareMatrixBase {
private:
using SquareMatrixBase::invert; // чтобы избежать сокрытия базовой
// версии invert; см. правило 33
public:
...
void invert() {this->invert(n);} // встроенный вызов версии invert
}; // из базового класса
// см. ниже – почему
// применяется “this->”
Как видите, параметризованная версия функции invert находится в базовом классе – SquareMatrixBase. Как и SquareMatrix, SquareMatrixBase – шаблон, но в отличие от SquareMatrix, он имеет только один параметр – тип объектов в матрице, но не имеет параметра size. Поэтому все матрицы, содержащие объекты заданного типа, будут разделять общий класс SquareMatrixBase. И, значит, все они разделят единственную копию функции invert из данного класса.
Назначение SquareMatrixBase::invert – помочь избежать дублирования кода в производных классах, поэтому using-объявление помещено в секцию protected, а не public. Дополнительные расходы на вызов этой функции нулевые, поскольку в производных классах ее вызовы invert встроены (встраивание неявное – см. правило 30). Во встроенных функциях применяется нотация «this->», потому что в противном случае, как следует из правила 43, имена функций из шаблонного базового класса (SquareMatrixBase) будут скрыты от подклассов. Отметим также, что наследование SquareMatrix от SquareMatrixBase – закрытое. Это отражает тот факт, что базовый класс введен только для одной цели – упростить реализацию производных, и не означает наличия концептуального отношения «является» между SquareMatrixBase и SquareMatrix (о закрытом наследовании см. правило 39).
До сих пор все шло хорошо, но имеется одна проблема, которую нам еще предстоит решить. Откуда класс SquareMatrixBase узнает, с какими данными он должен работать? Размерность матрицы ему известна из параметра, но как узнать, где находятся сами данные конкретной матрицы? По-видимому, это известно только производному классу. А как производный класс может передать эту информацию базовому, чтобы тот мог выполнить обращение матрицы?
Один из возможных способов – добавить дополнительный параметр в функцию SquareMatrixBase::invert, скажем, указатель на начало участка памяти, где размещаются данные матрицы. Это будет работать, но, скорее всего, invert – не единственная функция в классе SquareMatrix, которая может быть написана так, что не будет зависеть от размерности, и перенесена в класс SquareMatrixBase. Если таких функций будет несколько, всем им понадобится знать, где находятся данные матрицы. Нам придется в каждую добавлять новый параметр, и получится, что мы многократно передаем SquareMatrixBase одну и ту же информацию. Как-то неправильно это.
Есть альтернатива – хранить указатель на данные матрицы в SquareMatrixBase. И там же можно хранить размерность матрицы. Получается такой код:
template
class SquareMatrixBase {
protected:
SquareMatrixBase(std::size_t n, T pMem) // сохраняет размерность
:size(n), pData(pMem){} // и указатель на данные матрицы
void setData(T *ptr) { pData = ptr;} // присвоить значение pData
...
private:
std::size_t size; // размерность матрицы
T *pData; // указатель на данные матрицы
};
Это позволяет производным классам решать, как выделять память. Возможна, в частности, реализация, при которой данные матрицы сохраняются прямо в объекте SquareMatrix:
template
class SquareMatrix: private SquareMatrixBase {
public:
SquareMatrix() // передать базовому классу размерность
:SquareMatrixBase(n, data) {} // матрицы и указатель на данные
Интервал:
Закладка: