Хэл Фултон - Программирование на языке Ruby
- Название:Программирование на языке Ruby
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2007
- Город:Москва
- ISBN:5-94074-357-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хэл Фултон - Программирование на языке Ruby краткое содержание
Ruby — относительно новый объектно-ориентированный язык, разработанный Юкихиро Мацумото в 1995 году и позаимствовавший некоторые особенности у языков LISP, Smalltalk, Perl, CLU и других. Язык активно развивается и применяется в самых разных областях: от системного администрирования до разработки сложных динамических сайтов.
Книга является полноценным руководством по Ruby — ее можно использовать и как учебник, и как справочник, и как сборник ответов на вопросы типа «как сделать то или иное в Ruby». В ней приведено свыше 400 примеров, разбитых по различным аспектам программирования, и к которым автор дает обстоятельные комментарии.
Издание предназначено для программистов самого широкого круга и самой разной квалификации, желающих научиться качественно и профессионально работать на Ruby.
Программирование на языке Ruby - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Прочитать значение x (124)
Увеличить значение на 1 (125)
Записать результат в x
Возможны такие комбинации операций с потоками, при которых поток планируется даже тогда, когда какой-то другой поток находится в критической секции.
Простейший случай — вновь созданный поток начинает исполнение немедленно вне зависимости от того, занимает какой-то другой поток критическую секцию или нет. Поэтому описанную технику лучше применять только в самых простых ситуациях.
13.2.2. Синхронизация доступа к ресурсам (mutex.rb)
В качестве примера рассмотрим задачу индексирования Web-сайтов. Мы извлекаем слова из многочисленных страниц в Сети и сохраняем их в хэше. Ключом является само слово, а значением — строка, идентифицирующая документ и номер строки в этом документе.
Постановка задачи и так достаточно груба. Но мы огрубим ее еще больше, введя следующие упрощающие допущения:
• будем представлять удаленные документы в виде строк;
• ограничимся всего тремя строками (они будут «зашиты» в код);
• сетевые задержки будем моделировать «засыпанием» на случайный промежуток времени.
Взгляните на программу в листинге 13.1. Она даже не печатает получаемые данные целиком, а выводит лишь счетчик слов (не уникальный). Каждый раз при чтении или обновлении хэша мы вызываем метод hesitate
, который приостанавливает поток на случайное время. Тем самым поведение программы становится недетерминированным и приближенным к реальности.
@list = []
@list[0]="shoes ships\nsealing-wax"
@list[1]="cabbages kings"
@list[2]="quarks\nships\ncabbages"
def hesitate
sleep rand(0)
end
@hash = {}
def process_list(listnum)
lnum = 0
@list[listnum].each do |line|
words = line.chomp.split
words.each do |w|
hesitate
if @hash[w]
hesitate
@hash[w] += ["#{listnum}:#{lnum}"]
else
hesitate
@hash[w] = ["#{listnum}:#{lnum}"]
end
end
lnum += 1
end
end
t1 = Thread.new(0) {|num| process_list(num) }
t2 = Thread.new(1) {|num| process_list(num) }
t3 = Thread.new(2) {|num| process_list(num) }
t1.join
t2.join
t3.join
count = 0
@hash.values.each {|v| count += v.size }
puts "Всего слов: #{count} " # Может быть напечатано 7 или 8!
Здесь имеется проблема. Если ваша система ведет себя примерно так же, как наша, то программа может напечатать одно из двух значений! В наших тестах с одинаковой вероятностью печаталось 7 или 8. Если слов и списков больше, то и разброс окажется более широким.
Попробуем исправить положение с помощью мьютекса , который будет контролировать доступ к разделяемому ресурсу. (Слово «mutex» — это сокращение от mutual exclusion, «взаимная блокировка».)
Обратимся к листингу 13.2. Библиотека Mutex
позволяет создавать мьютексы и манипулировать ими. Мы можем захватить (lock) мьютекс перед доступом к хэшу и освободить (unlock) его по завершении операции.
require 'thread.rb'
@list = []
@list[0]="shoes ships\nsealing-wax"
@list[1]="cabbages kings"
@list[2]="quarks\nships\ncabbages"
def hesitate
sleep rand(0)
end
@hash = {}
@mutex = Mutex.new
def process_list(listnum)
lnum = 0
@list[listnum].each do |line|
words = line.chomp.split
words.each do |w|
hesitate
@mutex.lock
if @hash[w]
hesitate
@hash[w] += ["#{listnum}:#{lnum}"]
else
hesitate
@hash[w] = ["#{listnum}:#{lnum}"]
end
@mutex.unlock
end
lnum += 1
end
end
t1 = Thread.new(0) {|num| process_list(num) }
t2 = Thread.new(1) {|num| process_list(num) }
t3 = Thread.new(2) {|num| process_list(num) }
t1.join
t2.join
t3.join
count = 0
@hash.values.each {|v| count += v.size }
puts "Всего слов: #{count} " # Всегда печатается 8!
Отметим, что помимо метода lock
в классе Mutex
есть также метод try_lock
. Он отличается от lock
тем, что если мьютекс уже захвачен другим потоком, то он не дожидается освобождения, а сразу возвращает false
.
require 'thread'
mutex = Mutex.new
t1 = Thread.new { mutex.lock; sleep 30 }
sleep 1
t2 = Thread.new do
if mutex.try_lock
puts "Захватил"
else
puts "He сумел захватить" # Печатается немедленно.
end
end
sleep 2
Эта возможность полезна, если поток не хочет приостанавливать выполнение. Есть также метод synchronize
, который захватывает мьютекс, а потом автоматически освобождает его.
mutex = Mutex.new
mutex.synchronize do
# Любой код, нуждающийся в защите...
end
Существует еще библиотека mutex_m
, где определен модуль Mutex_m
, который можно подмешивать к классу (или использовать для расширения объекта). У такого расширенного объекта будут все методы мьютекса, так что он сам может выступать в роли мьютекса.
require 'mutex_m'
class MyClass
include Mutex_m
# Теперь любой объект класса MyClass может вызывать
# методы lock, unlock, synchronize...
# Внешние объекты также могут вызывать эти
# методы для объекта MyClass.
end
13.2.3. Предопределенные классы синхронизированных очередей
В библиотеке thread.rb
есть пара классов, которые иногда бывают полезны. Класс Queue
реализует безопасную относительно потоков очередь, доступ к обоим концам которой синхронизирован. Это означает, что разные потоки могут, ничего не опасаясь, работать с такой очередью. Класс SizedQueue
отличается от предыдущего тем, что позволяет ограничить размер очереди (число элементов в ней).
Оба класса имеют практически один и тот же набор методов, поскольку SizedQueue
наследует Queue
. Правда, в подклассе определен еще акцессор max, позволяющий получить и установить максимальный размер очереди.
buff = SizedQueue.new(25)
upper1 = buff.max #25
# Увеличить размер очереди...
buff.max = 50
upper2 = buff.max # 50
В листинге 13.3 приведено решение задачи о производителе и потребителе. Для производителя задержка (аргумент sleep) чуть больше, чем для потребителя, чтобы единицы продукции «накапливались».
require 'thread'
buffer = SizedQueue.new(2)
producer = Thread.new do
item = 0
loop do
sleep rand 0
puts "Производитель произвел #{item}"
buffer.enq item
item += 1
end
end
consumer = Thread.new do
loop do
sleep (rand 0)+0.9
item = buffer.deq
puts "Потребитель потребил #{item}"
puts " ожидает = #{buffer.num_waiting}"
end
end
sleep 60 # Работать одну минуту, потом завершить оба потока.
Интервал:
Закладка: