Хэл Фултон - Программирование на языке Ruby
- Название:Программирование на языке Ruby
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2007
- Город:Москва
- ISBN:5-94074-357-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хэл Фултон - Программирование на языке Ruby краткое содержание
Ruby — относительно новый объектно-ориентированный язык, разработанный Юкихиро Мацумото в 1995 году и позаимствовавший некоторые особенности у языков LISP, Smalltalk, Perl, CLU и других. Язык активно развивается и применяется в самых разных областях: от системного администрирования до разработки сложных динамических сайтов.
Книга является полноценным руководством по Ruby — ее можно использовать и как учебник, и как справочник, и как сборник ответов на вопросы типа «как сделать то или иное в Ruby». В ней приведено свыше 400 примеров, разбитых по различным аспектам программирования, и к которым автор дает обстоятельные комментарии.
Издание предназначено для программистов самого широкого круга и самой разной квалификации, желающих научиться качественно и профессионально работать на Ruby.
Программирование на языке Ruby - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
system("notepad.ехе","myfile.txt") # Никаких проблем...
system("cmd /с dir","somefile") # 'dir' - встроенная команда!
Другое решение — воспользоваться библиотекой Win32APIи определить собственный вариант метода system.
require "Win32API"
def system(cmd)
sys = Win32API.new("crtdll", "system", ['P'], 'L')
sys.Call(cmd)
end
system("dir") # cmd /с необязательно!
Таким образом, можно добиться более-менее системно-независимого поведения system. Но если вы хотите запомнить выведенную программой информацию (например, в переменной), то system— не лучший способ (см. следующий раздел).
Упомяну еще метод exec. Он ведет себя аналогично systemс тем отличием, что новый процесс замещает текущий. Поэтому код, следующий за exec, исполняться не будет.
puts "Содержимое каталога:"
exec("ls", "-l")
puts "Эта строка никогда не исполняется!"
14.1.2. Перехват вывода программы
Простейший способ перехватить информацию, выведенную программой, — заключить команду в обратные кавычки, например:
listing = `ls -l` # Одна строка будет содержать несколько строчек (lines).
now = `date` # "Mon Mar 12 16:50:11 CST 2001"
Обобщенный ограничитель %xвызывает оператор обратных кавычек (который в действительности является методом модуля Kernel). Работает он точно так же:
listing = %x(ls -l)
now = %x(date)
Применение %xбывает полезно, когда подлежащая исполнению строка содержит такие символы, как одиночные и двойные кавычки.
Поскольку обратные кавычки — это на самом деле метод (в некотором смысле), то его можно переопределить. Изменим его так, чтобы он возвращал не одну строку, а массив строк. Конечно, при этом мы создадим синоним старого метода, чтобы его можно было вызвать.
alias old_execute `
def `(cmd)
out = old_execute(cmd) # Вызвать исходный метод обратной кавычки.
out.split("\n") # Вернуть массив строк!
end
entries = `ls -l /tmp`
num = entries.size # 95
first3lines = %x(ls -l | head -n 3)
how_many = first3lines.size # 3
Как видите, при таком определении изменяется также поведение ограничителя %x.
В следующем примере мы добавили в конец команды конструкцию интерпретатора команд, которая перенаправляет стандартный вывод для ошибок в стандартный вывод:
alias old_execute `
def `(cmd)
old_execute(cmd + " 2>&1")
end
entries = `ls -l /tmp/foobar`
# "/tmp/foobar: No such file or directory\n"
Есть, конечно, и много других способов изменить стандартное поведение обратных кавычек.
14.1.3. Манипулирование процессами
В этом разделе мы обсудим манипулирование процессами, хотя создание нового процесса необязательно связано с запуском внешней программы. Основной способ создания нового процесса — это метод fork, название которого в соответствии с традицией UNIX подразумевает разветвление пути исполнения, напоминая развилку на дороге. (Отметим, что в базовом дистрибутиве Ruby метод forkна платформе Windows не поддерживается.)
Метод fork, находящийся в модуле Kernel(а также в модуле Process), не следует путать с одноименным методом экземпляра в классе Thread.
Существуют два способа вызвать метод fork. Первый похож на то, как это обычно делается в UNIX, — вызвать и проверить возвращенное значение. Если оно равно nil, мы находимся в дочернем процессе, в противном случае — в родительском. Родительскому процессу возвращается идентификатор дочернего процесса (pid).
pid = fork
if (pid == nil)
puts "Ага, я, должно быть, потомок."
puts "Так и буду себя вести."
else
puts "Я родитель."
puts "Пора отказаться от детских штучек."
end
В этом не слишком реалистичном примере выводимые строки могут чередоваться, а может случиться и так, что строки, выведенные родителем, появятся раньше. Но сейчас это несущественно.
Следует также отметить, что процесс-потомок может пережить своего родителя. Для потоков в Ruby это не так, но системные процессы — совсем другое дело.
Во втором варианте вызова метод forkпринимает блок. Заключенный в блок код выполняется в контексте дочернего процесса. Так, предыдущий вариант можно было бы переписать следующим образом:
fork do
puts "Ага, я, должно быть, потомок."
puts "Так и буду себя вести."
end
puts "Я родитель."
puts "Пора отказаться от детских штучек."
Конечно, pid по-прежнему возвращается, мы просто не показали его.
Чтобы дождаться завершения процесса, мы можем вызвать метод waitиз модуля Process. Он ждет завершения любого потомка и возвращает его идентификатор. Метод wait2ведет себя аналогично, только возвращает массив, содержащий РМ, и сдвинутый влево код завершения.
Pid1 = fork { sleep 5; exit 3 }
Pid2 = fork { sleep 2; exit 3 }
Process.wait # Возвращает pid2
Process.wait2 # Возвращает [pid1,768]
Чтобы дождаться завершения конкретного потомка, применяются методы waitpidи waitpid2.
pid3 = fork { sleep 5; exit 3 }
pid4 = fork { sleep 2; exit 3 }
Process.waitpid(pid4,Process::WNOHANG) # Возвращает pid4
Process.waitpid2(pid3, Process::WNOHANG) # Возвращает [pid3,768]
Если второй параметр не задан, то вызов может блокировать программу (если такого потомка не существует). Второй параметр можно с помощью ИЛИ объединить с флагом Process::WUNTRACED, чтобы перехватывать остановленные процессы. Этот параметр системно зависим, поэкспериментируйте.
Метод exit!немедленно завершает процесс (не вызывая зарегистрированных обработчиков). Если задан целочисленный аргумент, то он возвращается в качестве кода завершения; по умолчанию подразумевается значение 1 (не 0).
pid1 = fork { exit! } # Вернуть код завершения -1.
pid2 = fork { exit! 0 } # Вернуть код завершения 0.
Методы pidи ppidвозвращают соответственно идентификатор текущего и родительского процессов.
proc1 = Process.pid
fork do
if Process.ppid == proc1
puts "proc1 - мой родитель" # Печатается это сообщение.
else
puts "Что происходит?"
end
end
Метод killслужит для отправки процессу сигнала, как это понимается в UNIX. Первый параметр может быть целым числом, именем POSIX-сигнала с префиксом SIG или именем сигнала без префикса. Второй параметр — идентификатор процесса-получателя; если он равен нулю, подразумевается текущий процесс.
Process.kill(1,pid1) # Послать сигнал 1 процессу pid1.
Process.kill ("HUP",pid2) # Послать SIGHUP процессу pid2..
Process.kill("SIGHUP",pid2) # Послать SIGHUP процессу pid3.
Process.kill("SIGHUP",0) # Послать SIGHUP самому себе.
Для обработки сигналов применяется метод Kernel.trap. Обычно он принимает номер или имя сигнала и подлежащий выполнению блок.
Интервал:
Закладка: