Хэл Фултон - Программирование на языке Ruby
- Название:Программирование на языке Ruby
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2007
- Город:Москва
- ISBN:5-94074-357-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хэл Фултон - Программирование на языке Ruby краткое содержание
Ruby — относительно новый объектно-ориентированный язык, разработанный Юкихиро Мацумото в 1995 году и позаимствовавший некоторые особенности у языков LISP, Smalltalk, Perl, CLU и других. Язык активно развивается и применяется в самых разных областях: от системного администрирования до разработки сложных динамических сайтов.
Книга является полноценным руководством по Ruby — ее можно использовать и как учебник, и как справочник, и как сборник ответов на вопросы типа «как сделать то или иное в Ruby». В ней приведено свыше 400 примеров, разбитых по различным аспектам программирования, и к которым автор дает обстоятельные комментарии.
Издание предназначено для программистов самого широкого круга и самой разной квалификации, желающих научиться качественно и профессионально работать на Ruby.
Программирование на языке Ruby - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
def insert(x)
list = []
if @data == nil
@data = x
elsif @left == nil
@left = Tree.new(x)
elsif @right == nil
@right = Tree.new(x)
else
list << @left
list << @right
loop do
node = list.shift
if node.left == nil
node.insert(x)
break
else
list << node.left
end
if node.right == nil
node.insert(x)
break
else
list << node.right
end
end
end
end
def traverse()
list = []
yield @data
list << @left if @left != nil
list << @right if @right != nil
loop do
break if list.empty?
node = list.shift
yield node.data
list << node.left if node.left != nil
list << node.right if node.right != nil
end
end
end
items = [1, 2, 3, 4, 5, 6, 7]
tree = Tree.new
items.each {|x| tree.insert(x)}
tree.traverse {|x| print "#{x} "}
print "\n"
# Печатается "1 2 3 4 5 6 7 "
Такое дерево не слишком интересно. Но оно годится в качестве введения и фундамента, на котором можно возводить здание.
9.3.2. Сортировка с помощью двоичного дерева
Двоичное дерево позволяет эффективно реализовать сортировку произвольных данных. (Правда, если данные уже отсортированы, оно вырождается в обычный связанный список.) Причина ясна: при каждом сравнении мы исключаем половину мест, в которые можно поместить новый узел.
Хотя в настоящее время такой способ сортировки применяется редко, знать о нем не повредит. Код в листинге 9.2 основан на предыдущем примере.
class Tree
# Предполагается, что определения взяты из предыдущего примера...
def insert(x)
if @data == nil
@data = x
elsif x <= @data
if @left == nil
@left = Tree.new x
else
@left.insert x
end
else
if @right == nil
@right = Tree.new x
else
@right.insert x
end
end
end
def inorder()
@left.inorder {|y| yield y} if @left != nil
yield @data
@right.inorder {|y| yield y} if bright != nil
end
def preorder()
yield @data
@left.preorder {|y| yield y} if @left != nil
@right.preorder {|y| yield y} if @right != nil
end
def postorder()
@left.postorder {|y| yield y} if @left != nil
@right.postorder {|y| yield y} if @right != nil
yield @data
end
end
items = [50, 20, 80, 10, 30, 70, 90, 5, 14,
28, 41, 66, 75, 88, 96]
tree = Tree.new
items.each {|x| tree.insert(x)}
tree.inorder {|x| print x, " "}
print "\n"
tree.preorder {|x| print x, " "}
print "\n"
tree.postorder {|x| print x, " "}
print "\n"
# Печатается:
# 5 10 14 20 28 30 41 50 66 70 75 80 88 90 96
# 50 20 10 5 14 30 28 41 80 70 66 75 90 88 96
# 5 14 10 28 41 30 20 66 75 70 88 96 90 80 50
9.3.3. Использование двоичного дерева как справочной таблицы
Пусть дерево уже отсортировано. Тогда оно может служить прекрасной справочной таблицей; например, для поиска в сбалансированном дереве, содержащем миллион узлов, понадобится не более 20 сравнений (глубина дерева равна логарифму числа узлов по основанию 2). Чтобы поиск был осмысленным, предположим, что в каждом узле хранится не какое-то одно значение, а ключ и ассоциированные с ним данные.
Почти всегда лучше использовать в качестве справочной таблицы хэш или даже таблицу во внешней базе данных. Но все равно приведем код:
class Tree
# Предполагается, что определения взяты из предыдущего примера...
def search(x)
if self.data == x
return self
elsif x < self.data
return left ? left.search(x) : nil
else
return right ? right.search(x) : nil
end
end
end
keys = [50, 20, 80, 10, 30, 70, 90, 5, 14,
28, 41, 66, 75, 88, 96]
tree = Tree.new
keys.each {|x| tree.insert(x)}
s1 = tree.search(75) # Возвращает ссылку на узел, содержащий 75...
s2 = tree.search(100) # Возвращает nil (не найдено).
9.3.4. Преобразование дерева в строку или массив
С помощью тех же приемов, которые применяются для обхода дерева, мы можем преобразовать его в строку или в массив. Ниже мы выполняем обход во внутреннем порядке, хотя подошел бы и любой другой способ:
class Tree
# Предполагается, что определения взяты из предыдущего примера...
def to_s
"[" +
if left then left.to_s + "," else "" end +
data.inspect +
if right then "," + right.to_s else "" end + "]"
end
def to_a
temp = []
temp += left.to_a if left
temp << data
temp += right.to_a if right
temp
end
end
items = %w[bongo grimace monoid jewel plover nexus synergy]
tree = Tree.new
items.each {|x| tree.insert x}
str = tree.to_a * ","
# str is now "bongo,grimace,jewel,monoid,nexus,plover,synergy"
arr = tree.to_a
# arr равно:
# ["bongo",["grimace",[["jewel"],"monoid",[["nexus"],"plover",
# ["synergy"]]]]]
Отметим, что глубина вложенности получающегося массива равна глубине дерева с корнем в том узле, с которого мы начали обход. Чтобы получить плоский массив, можете воспользоваться методом flatten
.
9.4. Графы
Графом называется множество вершин, произвольным образом соединенных друг с другом. (Дерево — частный случай графа.) Не будем слишком углубляться в эту тему, поскольку теория и терминология весьма сложны. Очень скоро мы перешли бы от информатики в область чистой математики.
И все же у графов есть немало практических приложений. Возьмите обычную дорожную карту, на которой города соединены скоростными магистралями, или печатную плату. То и другое удобно представлять в виде графов. Компьютерную сеть тоже можно описать в терминах теории графов, будь то локальная сеть из нескольких десятков машин или весь Интернет, насчитывающий миллионы узлов.
Под графом мы обычно понимаем неориентированный граф . Попросту говоря, в нем не проставлены стрелки на соединительных линиях; две вершины либо соединены, либо нет. Между тем в ориентированном графе (орграфе) могут быть «улицы с односторонним движением»; из того, что вершина x соединена с вершиной у, не следует, что верно и обратное. Наконец, во взвешенном графе ребрам можно назначать веса. Например, вес может выражать «расстояние» между вершинами. Мы ограничимся только этими основными видами графов; интересующегося читателя отсылаем к многочисленным учебникам информатики и математики.
В Ruby, как и во многих других языках, граф можно представить разными способами, например в виде настоящей сети взаимосвязанных объектов или в виде матрицы, в которой хранятся ребра графа. Мы рассмотрим оба способа и на примерах покажем, как можно манипулировать графами.
9.4.1. Реализация графа в виде матрицы смежности
Нижеприведенный пример основан на двух предыдущих. В листинге 9.3 неориентированный граф реализован в виде матрицы смежности с помощью класса ZArray
(см. раздел 8.1.26). Это нужно для того, чтобы новые элементы по умолчанию получали значение 0. Также мы унаследовали классу TriMatrix
(см. раздел 8.1.7), чтобы получить нижнетреугольную матрицу.
Интервал:
Закладка: