Иван Братко - Программирование на языке Пролог для искусственного интеллекта
- Название:Программирование на языке Пролог для искусственного интеллекта
- Автор:
- Жанр:
- Издательство:Мир
- Год:1990
- Город:Москва
- ISBN:5-03-001425-Х
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иван Братко - Программирование на языке Пролог для искусственного интеллекта краткое содержание
Книга известного специалиста по программированию (Югославия), содержащая основы языка Пролог и его приложения для решения задач искусственного интеллекта. Изложение отличается методическими достоинствами — книга написана в хорошем стиле, живым языком. Книга дополняет имеющуюся на русском языке литературу по языку Пролог.
Для программистов разной квалификации, специалистов по искусственному интеллекту, для всех изучающих программирование.
Программирование на языке Пролог для искусственного интеллекта - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Другой возможный вопрос: является ли программа оптимальной, то есть верно ли, что она ставит мат за минимальное число ходов? Нетрудно показать на примерах, что игру нашей программы в этом смысле нельзя назвать оптимальной. Известно, что оптимальный вариант в этом окончании (т.е. предполагающий оптимальную игру с обеих сторон) имеет длину не более 16 ходов. Хотя наша таблица советов и далека от этого оптимума, было показано, что число, ходов наверняка не превосходит 50. Это важный результат в связи с тем, что в шахматах существует "правило 50-ти ходов": в эндшпилях типа "король и ладья против короля" противник, имеющий преимущество, должен поставить, мат не более, чем за 50 ходов; иначе может быть объявлена ничья.
% Библиотека предикатов для окончания
% "король и ладья против короля"
% Позиция представлена стуктурой:
% ЧейХод..Бх : Бу..Лх : Лу..Чх : Чу..Глуб
% ЧейХод - с чьей стороны ход в этой позиции ('б' или 'ч')
% Бх, Бу - координаты белого короля
% Лх, Лу - координаты белой ладьи
% Чх, Чу - координаты черного короля
% Глуб - глубина, на которой находится эта позиция в дереве
% поиска
% Отношения выбора элементов позиции
чей_ход( ЧейХод.._, ЧейХод).
бк( _..БК.._, БК). % Белый король
бл( _.._..БЛ.._, БЛ). % Белая ладья
чк( _.._.._..ЧК.._, ЧК). % Черный король
глуб( _.._.._.._..Глуб, Глуб).
восст_глуб( ЧХ..Б..Л..Ч..Г, ЧХ..Б..Л..Ч..0).
% Формируется копия позиции, глубина устанавливается в 0
% Некоторые отношения между клетками доски
сосед_чсл( N, N1) :- % Соседнее число "в пределах доски"
( N1 is N + 1;
N1 is N - 1 ),
внутри( N1).
внутри( N) :-
N > 0, N < 9.
сосед_диаг( X : Y, X1 : Y1) :-
% Соседние клетки по диагонали
сосед_чсл( X, X1 ), сосед_чсл( Y, Y1).
сосед_верт( X : Y, X : Y1) :-
% Соседние клетки по вертикали
сосед_чсл( Y, Y1).
сосед_гор( X : Y, X1 : Y) :-
% Соседние клетки по горизонтали
сосед_чсл( X, X1).
сосед( S, S1) :-
% Соседние клетки (предпочтение - диагонали)
сосед_диаг( S, S1);
сосед_гор( S, S1);
сосед_верт( S, S1).
конец_игры( Поз) :-
мат( Поз).
% Предикаты, ограничивающие ходы
% Специализированное генераторы ходов вида:
% ход( Ограничение, Поз, Ход, Поз1)
ход( глубина < Макс, Поз, Ход, Поз1) :-
глуб( Поз, Г),
Г < Макс, !.
ход( глубина = Г, Поз, Ход, Поз1) :-
глуб( Поз, Г), !.
ход( сначала диаг, б..Б..Л..Ч..Г, Б-Б1,
ч..Б1..Л..Ч..Г1) :-
Г1 is Г + l,
сосед( Б, Б1),
% "сосед" порождает сначала диагональные ходы
not сосед( Б1, Ч), % Не попасть под шах
Б1 \== Л. % Не столкнуться с ладьей
ход( ход ладьей, б..Б..Лх : Лу..Ч..Г, Лх : Лу-Л,
ч..Б..Л..Ч..Г1) :-
Г1 is Г + 1,
коорд( I), % Число между 1 и 8
( Л = Лх : I; Л = I : Лу),
% По горизонтали или по вертикали
Л \== Лх : Лу, % Обязательно двигаться
not мешает( Лх : Лу, Б, Л). % Мешает белый король
ход( ход_шах, Поз, Л-Лх : Лу, Поз1) :-
бл( Поз, Л),
чк( Поз, Чх : Чу),
( Лх = Чх; Лу = Чу),
% Ладья и черный король на одной линии
ход( ход_ладьей, Поз, Л-Лх : Лу, Поз1).
ход( разреш, б..П, М, П1) :-
( Огр = сначала_диаг; Огр = ход ладьей),
ход( Огр, б..П, М, П1).
ход( разреш, ч..Б..Л..Ч..Г, Ч-Ч1, б..Б..Л..Ч1..Г1) :-
Г1 is Г + 1,
сосед( Ч, Ч1),
not шах( б..Б..Л..Ч1..Г1).
разрход( Поз, Ход, Поз1) :-
ход( разреш, Поз, Ход, Поз1).
шах( _..Б..Лх : Лу..Чх : Чу.._ ) :-
сосед( Б, Чх : Чу); % Короли рядом
( Лх = Чх; Лу = Чу),
Лх : Лу \== Чх : Чу, % Нет взятия ладьи
not мешает( Лх : Лу, Б, Чх : Чу).
мешает( S, S1, S1) :- !.
мешает( X1 : Y, X2 : Y, Х3 : Y) :-
упоряд( X1, Х2, Х3), !.
мешает( X : Y1, X : Y2, X : Y3) :-
упоряд( Y1, Y2, Y3).
упоряд( N1, N2, N3) :-
N1 < N2, N2 < N3;
N3 < N2, N2 < N1.
коорд( 1). коорд( 2). коорд( 3). коорд( 4).
коорд( 5). коорд( 6). коорд( 7). коорд( 8).
% Предикаты целей
любая_поз( Поз).
ход_противника( б.._ ). % Противник ходит белыми
мат( Поз) :-
чей_ход( Поз, ч),
шах( Поз),
not разрход( Поз, _, _ ).
пат( Поз) :-
чей_ход( Поз, ч),
not шах( Поз),
not разрход( Поз, _, _ ).
уменьш_простр( Поз, КорнПоз) :-
простр( Поз, Пр),
простр( КорнПоз, КорнПр),
Пр < КорнПр.
ладья_под_боем( ЧейХод..Б..Л..Ч.._ ) :-
расст( Б, Л, P1),
расст( Ч, Л, Р2),
( ЧейХод = б, !, P1 > Р2 + 1;
ЧейХод = ч, !, P1 > Р2 ).
ближе_к_клетке( Поз, КорнПоз) :-
расст_до_клетки( Поз, P1),
расст_до_клетки( КорнПоз, Р2),
P1 < Р2.
расст_до_клетки( Поз, Мрасст) :-
% Манхеттеновское расстояние
бк( Поз, БК), % между БК и критической клеткой
кк( Поз, КК), % Критическая клетка
манх_расст( БК, КК, Мрасст).
раздел( _..Бх : Бу..Лх : Лу.. Чх : Чу.._ ) :-
упоряд( Бх, Лх, Чх), !;
упоряд( Бу, Лу, Чу).
l_конфиг( _..Б..Л..Ч.._ ) :- % L - конфигурация
манх_расст( Б, Ч, 2),
манх_расст( Л, Ч, 3).
не дальше_от_ладьи( _..Б..Л.._, _..Б1..Л1.._ ) :-
расст( Б, Л, P),
расст( Б1, Л1, P1),
P =< P1.
простр_больше_2( Поз) :-
простр( Поз, Пр),
Пр > 2.
наш_король_на_краю( _..X : Y.._ ) :-
% Белый король на краю
( X = 1, !; X = 8, !; Y = 1, !; Y = 8).
король_противника_на_краю( _..Б..Л..X : Y.._ ) :-
% Черный король на краю
( X = 1, !; X = 8, !; Y = 1, !; Y = 8).
короли_рядом( Поз) :- % Расстояние между королями < 4
бк( Поз, БК), чк( Поз, ЧК),
расст( БК, ЧК, P),
P < 4.
потеря_ладьи( _..Б..Л..Л.._ )- % Ладья взята
потеря_ладьи( ч..Б..Л..Ч.._ ) :-
сосед( Ч, Л), % Черный король напал на ладью
not сосед( Б, Л). % Белый король не защищает ладью
расст( X : Y, X1 : Y1, P) :- % Расстояние до короля
абс_разн( X, X1, Рх),
абс_разн( Y, Y1, Ру),
макс( Рх, Ру, P).
абс_разн( А, В, С) :-
А > В, !, С is A - В;
С is В - А.
макс( А, В, М) :-
А >= В, !, М = А;
М = В.
манх_расст( X : Y, X1 : Y1, P) :- % Манхеттеновское расстояние
абс_разн( X, X1, Рх),
абс_разн( Y, Y1, Ру),
P is Рх + Ру.
простр( Поз, Пр) :-
% Область, в которой "заперт" черный король
бл( Поз, Лх : Лу),
чк( Поз, Чх : Чу),
( Чх < Лх, СторонаХ is Лх - 1;
Чх > Лх, СторонаХ is 8 - Лх ),
Интервал:
Закладка: