Роман Сузи - Язык программирования Python

Тут можно читать онлайн Роман Сузи - Язык программирования Python - бесплатно ознакомительный отрывок. Жанр: comp-programming. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Язык программирования Python
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Сузи - Язык программирования Python краткое содержание

Язык программирования Python - описание и краткое содержание, автор Роман Сузи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Курс посвящен одному из бурно развивающихся и популярных в настоящее время сценарных языков программирования — Python. Язык Python позволяет быстро создавать как прототипы программных систем, так и сами программные системы, помогает в интеграции программного обеспечения для решения производственных задач. Python имеет богатую стандартную библиотеку и большое количество модулей расширения практически для всех нужд отрасли информационных технологий. Благодаря ясному синтаксису изучение языка не составляет большой проблемы. Написанные на нем программы получаются структурированными по форме, и в них легко проследить логику работы. На примере языка Python рассматриваются такие важные понятия как: объектно–ориентированное программирование, функциональное программирование, событийно–управляемые программы (GUI–приложения), форматы представления данных (Unicode, XML и т.п.). Возможность диалогового режима работы интерпретатора Python позволяет существенно сократить время изучения самого языка и перейти к решению задач в соответствующих предметных областях. Python свободно доступен для многих платформ, а написанные на нем программы обычно переносимы между платформами без изменений. Это обстоятельство позволяет применять для изучения языка любую имеющуюся аппаратную платформу.

Язык программирования Python - читать онлайн бесплатно ознакомительный отрывок

Язык программирования Python - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Сузи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В результате получится класс, эквивалентный следующему:

class My_Class(object):

def my_method(self):

print "self:", self

Но самое интересное начинается при попытке составить собственный метакласс. Проще всего наследовать метакласс от метакласса type (пример взят из статьи Дэвида Мертца):

>>> class My_Type(type):

... def __new__(cls, name, bases, dict):

... print "Выделение памяти под класс", name

... return type.__new__(cls, name, bases, dict)

... def __init__(cls, name, bases, dict):

... print "Инициализация класса", name

... return super(My_Type, cls).__init__(cls, name, bases, dict)

...

>>> my = My_Type("X", (), {})

Выделение памяти под класс X

Инициализация класса X

В этом примере не происходит вмешательство в создание класса. Но в __new__()и __init__()имеется полный программный контроль над создаваемым классом в период выполнения.

Примечание:

Следует заметить, что в метаклассах принято называть первый аргумент методов не self, а cls, чтобы напомнить, что экземпляр, над которым работает программист, является не просто объектом, а классом.

Мультиметоды

Некоторые объектно–ориентированные «штучки» не входят в стандартный Python или стандартную библиотеку. Ниже будут рассмотрены мультиметоды— методы, сочетающие объекты сразу нескольких различных классов. Например, сложение двух чисел различных типов фактически требует использования мультиметода. Если «одиночный» метод достаточно задать для каждого класса, то мультиметод требует задания для каждого сочетания классов, которые он обслуживает:

>>> import operator

>>> operator.add(1, 2)

3

>>> operator.add(1.0, 2)

3.0

>>> operator.add(1, 2.0)

3.0

>>> operator.add(1, 1+2j)

(2+2j)

>>> operator.add(1+2j, 1)

(2+2j)

В этом примере operator.addведет себя как мультиметод, выполняя разные действия для различных комбинаций параметров.

Для организации собственных мультиметодов можно воспользоваться модулем Multimethod(автор Neel Krishnaswami), который легко найти в Интернете. Следующий пример, адаптированный из документации модуля, показывает построение собственного мультиметода:

from Multimethod import Method, Generic, AmbiguousMethodError

# классы, для которых будет определен мультиметод

class A: pass

class B(A): pass

# функции мультиметода

def m1(a, b): return 'AA'

def m2(a, b): return 'AB'

def m3(a, b): return 'BA'

# определение мультиметода (без одной функции)

g = Generic()

g.add_method(Method((A, A), m1))

g.add_method(Method((A, B), m2))

g.add_method(Method((B, A), m3))

# применение мультиметода

try:

print 'Типы аргументов:', 'Результат'

print 'A, A:', g(A(), A())

print 'A, B:', g(A(), B())

print 'B, A:', g(B(), A())

print 'B, B:', g(B(), B())

except AmbiguousMethodError:

print 'Неоднозначный выбор метода'

Устойчивые объекты

Для того чтобы объекты жили дольше, чем создавшая их программа, необходим механизм их представления в виде последовательности байтов. Во второй лекции уже рассматривался модуль pickle, который позволяет сериализовать объекты.

Здесь же будет показано, как класс может способствовать более качественному консервированию объекта. Следующие методы, если их определить в классе, позволяют управлять работой модуля pickleи рассмотренной ранее функции глубокого копирования. Другими словами, правильно составленные методы дают возможность воссоздать объект, передав самую суть — состояние объекта.

__getinitargs__() Должен возвращать кортеж из аргументов, который будет передаваться на вход метода __init__()при создании объекта.
__getstate__() Должен возвращать словарь, в котором выражено состояние объекта. Если этот метод в классе определен, то используется атрибут __dict__, который есть у каждого объекта.
__setstate__(state) Должен восстанавливать объекту ранее сохраненное состояние state.

В следующем примере класс CC управляет своим копированием (точно так же экземпляры этого класса смогут консервироваться и расконсервироваться при помощи модуля pickle):

from time import time, gmtime

import copy

class CC:

def __init__(self, created=time()):

self.created = created

self.created_gmtime = gmtime(created)

self._copied = 1

print id(self), "init", created

def __getinitargs__(self):

print id(self), "getinitargs", self.created

return (self.created,)

def __getstate__(self):

print id(self), "getstate", self.created

return {'_copied': self._copied}

def __setstate__(self, dict):

print id(self), "setstate", dict

self._copied = dict['_copied'] + 1

def __repr__(self):

return "%s obj: %s %s %s" % (id(self), self._copied,

self.created, self.created_gmtime)

a = CC()

print a

b = copy.deepcopy(a)

print b

В результате будет получено

1075715052 init 1102751640.91

1075715052 obj: 1 1102751640.91 (2004, 12, 11, 7, 54, 0, 5, 346, 0)

1075715052 getinitargs 1102751640.91

1075729452 init 1102751640.91

1075715052 getstate 1102751640.91

1075729452 setstate {'copied': 1}

1075729452 obj: 2 1102751640.91 (2004, 12, 11, 7, 54, 0, 5, 346, 0)

Состояние объекта состоит из трех атрибутов: created, created_gmtime, copied. Первый из этих атрибутов может быть восстановлен передачей параметра конструктору. Второй — вычислен в конструкторе на основе первого. А вот третий не входит в интерфейс класса и может быть передан только через механизм getstate/ setstate. Причем, по смыслу этого атрибута при каждом копировании он должен увеличиваться на единицу (хотя в разных случаях атрибут может требовать других действий или не требовать их вообще). Следует включить отладочные операторы вывода, чтобы отследить последовательность вызовов методов при копировании.

Механизм getstate/ setstateпозволяет передавать при копировании только то, что нужно для воссоздания объекта, тогда как атрибут __dict__может содержать много лишнего. Более того, __dict__может содержать объекты, которые просто так сериализации не поддаются, и поэтому getstate/ setstate— единственная возможность обойти подобные ограничения.

Примечание:

Следует заметить, что сериализация функций и классов — лишь кажущаяся: на принимающей стороне должны быть определения функций и классов, передаются же только их имена и принадлежность модулям.

Для хранения объектов используются не только простейшие механизмы хранения вроде pickle.dump/ pickle.loadили полки shelve. Сериализованные объекты Python можно хранить в специализированных хранилищах объектов (например, ZODB) или реляционных базах данных.

Это также касается передачи объектов по сетям передачи данных. Если простейшие объекты (вроде строк или чисел) можно передавать напрямую через HTTP, XML–RPC, SOAP и т.д., где они имеют собственный тип, то произвольные объекты необходимо консервировать на передающей стороне и расконсервировать на принимающей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Сузи читать все книги автора по порядку

Роман Сузи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Язык программирования Python отзывы


Отзывы читателей о книге Язык программирования Python, автор: Роман Сузи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x