Роман Сузи - Язык программирования Python
- Название:Язык программирования Python
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роман Сузи - Язык программирования Python краткое содержание
Курс посвящен одному из бурно развивающихся и популярных в настоящее время сценарных языков программирования — Python. Язык Python позволяет быстро создавать как прототипы программных систем, так и сами программные системы, помогает в интеграции программного обеспечения для решения производственных задач. Python имеет богатую стандартную библиотеку и большое количество модулей расширения практически для всех нужд отрасли информационных технологий. Благодаря ясному синтаксису изучение языка не составляет большой проблемы. Написанные на нем программы получаются структурированными по форме, и в них легко проследить логику работы. На примере языка Python рассматриваются такие важные понятия как: объектно–ориентированное программирование, функциональное программирование, событийно–управляемые программы (GUI–приложения), форматы представления данных (Unicode, XML и т.п.). Возможность диалогового режима работы интерпретатора Python позволяет существенно сократить время изучения самого языка и перейти к решению задач в соответствующих предметных областях. Python свободно доступен для многих платформ, а написанные на нем программы обычно переносимы между платформами без изменений. Это обстоятельство позволяет применять для изучения языка любую имеющуюся аппаратную платформу.
Язык программирования Python - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Критика ООП
Объектно–ориентированный подход сегодня считается «самым передовым». Однако не следует слепо верить в его всемогущество. Отдача (в виде скорости разработки) от объектного проектирования чувствуется только в больших проектах и в проектах, которые родственны объектному подходу: построение графического интерфейса, моделирование систем и т.п.
Также спорна большая гибкость объектных программ к изменениям. Она зависит от того, вносится ли новый метод (для серии объектов) или новый тип объекта. При процедурном подходе при появлении нового метода пишется отдельная процедура, в которой в каждой ветке алгоритма обрабатывается свой тип данных (то есть такое изменение требует редактирования одного места в коде). При ООП изменять придется каждый класс, внося в него новый метод (то есть изменения в нескольких местах). Зато ООП выигрывает при внесении нового типа данных: ведь изменения происходят только в одном месте, где описываются все методы для данного типа. При процедурном подходе приходится изменять несколько процедур. Сказанное иллюстрируется ниже. Пусть имеются классы A
, B
, C
и методы a
, b
, c
:
# ООП
class A:
def a(): ...
def b(): ...
def c(): ...
class B:
def a(): ...
def b(): ...
def c(): ...
class C:
def a(): ...
def b(): ...
def c(): ...
# процедурный подход
def a(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
def b(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
def c(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
При внесении нового типа объекта изменения в ОО–программе затрагивают только один модуль, а в процедурной — все процедуры:
# ООП
class D:
def a(): ...
def b(): ...
def c(): ...
# процедурный подход
def a(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
if type(x) is D: ...
def b(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
if type(x) is D: ...
def c(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
if type(x) is D: ...
И наоборот, теперь нужно добавить новый метод обработки. При процедурном подходе просто пишется новая процедура, а вот для объектного приходится изменять все классы:
# процедурный подход
def d(x):
if type(x) is A: ...
if type(x) is B: ...
if type(x) is C: ...
# ООП
class A:
def a(): ...
def b(): ...
def c(): ...
def d(): ...
class B:
def a(): ...
def b(): ...
def c(): ...
def d(): ...
class C:
def a(): ...
def b(): ...
def c(): ...
def d(): ...
Язык программирования Python изначально был ориентирован на практические нужды. Приведенное выше выражается в стандартной библиотеке Python, то есть в том, что там применяются и функции (обычно сильно обобщенные на довольно широкий круг входных данных), и классы (когда операции достаточно специфичны). Обобщенная природа функций Python и полиморфизм, не завязанный целиком на наследовании — вот свойства языка Python, позволяющие иметь большую гибкость в комбинации процедурного и объектно–ориентированного подходов.
Заключение
Даже достаточно неформальное введение в ООП потребовало определения большого количества терминов. В лекции была сделана попытка с помощью примеров передать не столько букву, сколько дух терминологии ООП. Были рассмотрены все базовые понятия: объект, тип, класс и виды отношений между объектами (IS–A, HAS–A, USE–A). Слушатели получили представление о том, что такое инкапсуляция и полиморфизм в стиле ООП, а также наследование — продление времени жизни объекта за рамками исполняющейся программы, известное как устойчивость объекта (object persistence). Были указаны недостатки ООП, но при этом весь предыдущий материал объективно свидетельствовал о достоинствах этого подхода.
Возможно, что именно эта лекция приведет слушателей к пониманию ООП, пригодному и удобному для практической работы.
Ссылки
Дэвид Мертц http://www-106.ibm.com/developerworks/linux/library/l-pymeta.html
Лекция #5: Численные алгоритмы. Матричные вычисления.
В данной лекции рассматривается пакет Numeric для осуществления численных расчетов и выполнения матричных вычислений, приводится обзор других пакетов для научных вычислений.
Numeric Python— это несколько модулей для вычислений с многомерными массивами, необходимых для многих численных приложений. Модуль Numeric вносит в Python возможности таких пакетов и систем как MatLab, Octave (аналог MatLab), APL, J, S+, IDL. Пользователи найдут Numeric достаточно простым и удобным. Стоит заметить, что некоторые синтаксические возможности Python (связанные с использованием срезов) были специально разработаны для Numeric.
Numeric Python имеет средства для:
• матричных вычислений LinearAlgebra
;
• быстрого преобразования Фурье FFT
;
• работы с недостающими экспериментальными данными MA
;
• статистического моделирования RNG
;
• эмуляции базовых функций программы MatLab.
Модуль Numeric
Модуль Numeric
определяет полноценный тип–массив и содержит большое число функций для операций с массивами. Массив— это набор однородных элементов, доступных по индексам. Массивы модуля Numeric
могут быть многомерными, то есть иметь более одной размерности.
Создание массива
Для создания массива можно использовать функцию array()
с указанием содержимого массива (в виде вложенных списков) и типа. Функция array()
делает копию, если ее аргумент — массив. Функция asarray()
работает аналогично, но не создает нового массива, когда ее аргумент уже является массивом:
>>> from Numeric import *
>>> print array([[1, 2], [3, 4], [5, 6]])
[[1 2]
[3 4]
[5 6]]
>>> print array([[1, 2, 3], [4, 5, 6]], Float)
[[ 1. 2. 3.]
[ 4. 5. 6.]]
>>> print array([78, 85, 77, 69, 82, 73, 67], 'c')
[N U M E R I C]
В качестве элементов массива можно использовать следующие типы: Int8
– Int32
, UnsignedInt8
– UnsignedInt32
, Float8
– Float64
, Complex8
– Complex64
и PyObject
. Числа 8, 16, 32 и 64 показывают количество битов для хранения величины. Типы Int
, UnsignedInteger
, Float
и Complex
соответствуют наибольшим принятым на данной платформе значениям. В массиве можно также хранить ссылки на произвольные объекты.
Количество размерностей и длина массива по каждой оси называются формой массива (shape). Доступ к форме массива реализуется через атрибут shape
:
Интервал:
Закладка: