Д. Стефенс - C++. Сборник рецептов
- Название:C++. Сборник рецептов
- Автор:
- Жанр:
- Издательство:КУДИЦ-ПРЕСС
- Год:2007
- Город:Москва
- ISBN:5-91136-030-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Д. Стефенс - C++. Сборник рецептов краткое содержание
Данная книга написана экспертами по C++ и содержит готовые рецепты решения каждодневных задач для программистов на С++. Один из авторов является создателем библиотеки Boost Iostreams и нескольких других библиотек C++ с открытым исходным кодом. В книге затрагивается множество тем, вот лишь некоторые из них: работа с датой и временем; потоковый ввод/вывод; обработка исключений; работа с классами и объектами; сборка приложений; синтаксический анализ XML-документов; программирование математических задач. Читатель сможет использовать готовые решения, а сэкономленное время и усилия направить на решение конкретных задач.
C++. Сборник рецептов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
template
void fft(Iter_r a, Iter_r b, int log2n) {
typedef typename iterator_traits::value_type complex;
const complex J(0, 1);
int n = 1 << log2n;
for (unsigned int i=0; i < n; ++i) {
b[bitReverse(i, log2n)] = a[i];
}
for (int s = 1; s <= log2n; ++s) {
int m = 1 << s;
int m2 = m >> 1;
complex w(1, 0);
complex wm = exp(-J * (PI / m2));
for (int j=0; j < m2; ++j) {
for (int k=j; k < n; k += m) {
complex t = w * b[k + m2];
complex u = b[k];
b[k] = u + t;
b[k + m2] = u - t;
}
w *= wm;
}
}
}
int main() {
typedef complex cx;
cx a[] = { cx(0, 0), cx(1, 1), cx(3, 3), cx(4, 4),
cx(4, 4), cx(3, 3), cx(1, 1), cx(0, 0) };
cx b[8];
fft(a, b, 3);
for (int i=0; i<8; ++i) cout << b[i] << "\n";
}
Программа примера 11.33 выдает следующий результат.
(16,16)
(-4.82843,-11.6569)
(0,0)
(-0.343146,0.828427)
(0.0)
(0.828427,-0.343146)
(0,0)
(-11.6569,-4.82843)
Преобразование Фурье играет важную роль в спектральном анализе и часто используется в технических и научных приложениях. БПФ — это алгоритм вычисления ДПФ, который имеет сложность порядка N log 2( N ) в отличие от ожидаемой сложности N ² для простой реализации ДПФ. Такое впечатляющее ускорение достигается в БПФ благодаря устранению избыточных вычислений.
Очень не просто найти хорошую реализацию БПФ, написанную на «правильном» C++ (т. е. когда программа на C++ не является механическим переложением алгоритмов, написанных на Фортране или С) и которая не была бы защищена сильно ограничивающей лицензией. Представленный в примере 11.33 программный код основан на открытом коде, который можно найти в сетевой конференции Usenet, посвященной цифровой обработке сигналов ( comp.dsp ). Большим преимуществом реализации БПФ на правильном C++ по сравнению с более распространенным решением в стиле С является то, что стандартная библиотека содержит шаблон complex
, который позволяет существенно снизить объем необходимого программного кода. В представленной в примере 11.33 функции fft()
основное внимание уделялось простоте, а не эффективности.
11.18. Работа с полярными координатами
Требуется обеспечить представление полярных координат и манипулирование ими.
Шаблон complex
из заголовочного файла содержит функции преобразования в полярные координаты и обратно. Пример 11.34 показывает, как можно использовать класс шаблона complex для представления и манипулирования полярными координатами.
Пример 11.34. Применение шаблонного класса complex для представления полярных координат
#include
#include
using namespace std;
int main() {
double rho = 3.0; // длина
double theta = 3.141592 / 2; // угол
complex coord = polar(rho, theta);
cout << "rho = " << abs(coord) << ", theta = " << arg(coord) << endl;
coord += polar(4.0, 0.0);
cout << "rho = " << abs(coord) << ", theta = " << arg(coord) << endl;
}
Программа примера 11.34 выдает следующий результат.
rho = 3, theta = 1.5708
rho = 5, theta = 0.643501
Существует естественная связь между полярными координатами и комплексными числами. Хотя эти понятия в какой-то мере взаимозаменяемы, использование одного и того же типа для представления разных концепций в целом нельзя считать хорошей идеей. Поскольку применение шаблона complex
для представления полярных координат не является элегантным решением, я предусмотрел приведенный в примере 11.25 класс полярных координат, допускающий более естественное применение.
Пример 11.35. Класс полярных координат
#include
#include
using namespace std;
template
struct BasicPolar {
public typedef BasicPolar self;
// конструкторы
BasicPolar() : m() {} BasicPolar(const self& x) : m(x.m) {}
BasicPolar(const T& rho, const T& theta) : m(polar(rho, theta)) {}
// операторы присваивания
self operator-() { return Polar(-m); }
self& operator+=(const self& x) { m += x.m; return *this; }
self& operator-=(const self& x) { m -= x.m; return *this; }
self& operator*=(const self& x) { m *= x.m; return *this; }
self& operator/=(const self& x) { m /= x.m; return *this; }
operator complex() const { return m; }
// открытые функции-члены
T rho() const { return abs(m); }
T theta() const { return arg(m); }
// бинарные операции
friend self operator+(self x, const self& y) { return x += y; }
friend self operator-(self x, const self& y) { return x -= y; }
friend self operator*(self x, const self& y) { return x *= y; }
friend self operator/(self x, const self& y) { return x /= y; }
// операторы сравнения
friend bool operator==(const self& x, const self& y) { return x.m == y.m; }
friend bool operator!=(const self& x, const self& y) { return x.m ! = y.m; }
private:
complex m;
};
typedef BasicPolar Polar;
int main() {
double rho = 3.0; // длина
double theta = 3.141592 / 2; // угол
Polar coord(rho, theta);
cout << "rho = " << coord.rho() << ", theta = " << coord.theta() << endl;
coord += Polar(4.0, 0.0);
cout << "rho = " << coord.rho() << ", theta = " << coord.theta() << endl;
system("pause");
}
В примере 11.35 с помощью typedef
я определил тип Polar
как специализацию шаблона BasicPolar
. Так удобно определять используемый по умолчанию тип, однако вы можете при необходимости специализировать шаблон BasicPolar
другим числовым типом. Такой подход используется в стандартной библиотеке в отношении классе string
, который является специализацией шаблона basic_string
.
11.19. Выполнение операций с битовыми наборами
Требуется реализовать основные арифметические операции и операции сравнения для набора бит, рассматривая его как двоичное представление целого числа без знака.
Программный код примера 11.36 содержит функции, которые позволяют выполнять арифметические операции и операции сравнения с шаблоном класса bitset
из заголовочного файла , рассматривая его как целый тип без знака.
Пример 11.36. bitset_arithmetic.hpp
#include
#include
bool fullAdder(bool b1, bool b2, bool& carry) {
bool sum = (b1 ^ b2) ^ carry;
carry = (b1 && b2) || (b1 && carry) || (b2 && carry);
return sum;
}
bool fullSubtractor(bool b1, bool b2, bool& borrow) {
bool diff;
if (borrow) {
diff = !(b1 ^ b2);
borrow = !b1 || (b1 && b2);
} else {
diff = b1 ^ b2;
borrow = !b1 && b2;
}
return diff;
}
template
bool bitsetLtEq(const std::bitset& x, const std::bitset& y) {
for (int i=N-1; i >= 0; i--) {
if (x[i] && !y[i]) return false;
if (!x[i] && y[i]) return true;
}
return true;
}
template
bool bitsetLt(const std::bitset& x, const std::bitset& y) {
for (int i=N-1; i >= 0, i--) {
if (x[i] && !y[i]) return false;
if (!x[i] && y[i]) return true;
}
return false;
}
Интервал:
Закладка: