Марк Митчелл - Программирование для Linux. Профессиональный подход
- Название:Программирование для Linux. Профессиональный подход
- Автор:
- Жанр:
- Издательство:Вильямс
- Год:2002
- Город:Москва
- ISBN:5-8459-0243-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Митчелл - Программирование для Linux. Профессиональный подход краткое содержание
Данная книга в основном посвящена программированию в среде GNU/Linux. Авторы применяют обучающий подход, последовательно излагая самые важные концепции и методики использования расширенных возможностей системы GNU/Linux в прикладных программах. Читатели научатся писать программы, к интерфейсу которых привыкли пользователи Linux; освоят такие технологии, как многозадачность, многопотоковое программирование, межзадачное взаимодействие и взаимодействие с аппаратными устройствами; смогут улучшить свои программы, сделав их быстрее, надежнее и безопаснее; поймут особенности системы GNU/Linux, ее ограничения, дополнительные возможности и специфические соглашения.
Книга предназначена для программистов, уже знакомых с языком С и имеющих базовый опыт работы в GNU/Linux.
Программирование для Linux. Профессиональный подход - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для запуска программы с ненулевым фактором уступчивости необходимо воспользоваться командой nice -n
. Рассмотрим следующий пример:
% nice -n 10 sort input.txt > output.txt
Здесь активизируется длительная операция сортировки, которая, благодаря пониженному приоритету, не приведет к сильному снижению производительности системы. Изменить фактор уступчивости выполняющегося процесса позволяет команда renice
.
Если требуется менять фактор уступчивости программным путем, воспользуйтесь функцией nice()
. Ее аргумент — это величина приращения, добавляемая к фактору уступчивости вызывающего процесса. В результате приоритет процесса снижается.
Только программа с привилегиями пользователя root
может запускать процессы с отрицательным фактором уступчивости или понижать это значение у выполняющегося процесса. Это означает, что вызывать команды nice
и renice
с отрицательными аргументами можно, лишь войдя в систему как пользователь root, и только процесс, выполняемый от имени суперпользователя, может передавать функции nice()
отрицательное значение. Таким образом, обычные пользователи не могут помешать работать процессам других пользователей и монополизировать системные ресурсы.
3.3. Сигналы
Сигналы — это механизм связи между процессами в Linux. Данная тема очень обширна, поэтому здесь мы рассмотрим лишь наиболее важные сигналы и методики управления процессами.
Сигнал представляет собой специальное сообщение, посылаемое процессу. Сигналы являются асинхронными: когда процесс принимает сигнал, он немедленно обрабатывает его, прерывая выполнение текущей функции и даже текущей строки программы. Есть несколько десятков различных сигналов, каждый из которых имеет свое функциональное назначение. Все они распознаются по номерам, но в программах для ссылки на сигналы пользуются символическими константами. В Linux эти константы определены в файле /usr/include/bits/signum.h (его не нужно включать в программы, для этого есть файл ).
В ответ на полученный сигнал процесс выполняет ряд действий в зависимости от типа сигнала. У каждого сигнала есть стандартный обработчик , определяющий, что произойдет с процессом, если он попытается проигнорировать сигнал. Для большинства сигналов можно также задавать явную функцию обработки. В этом случае при поступлении сигнала выполнение программы приостанавливается, выполняется обработчик, а потом программа возобновляет свою работу.
Операционная система Linux посылает процессам сигналы в случае возникновения определенных ситуаций. Например, сигналы SIGBUS
(ошибка на шине), SIGSEGV
(нарушение сегментации) и SIGFPE
(ошибка операции с плавающей запятой) могут быть посланы процессу, пытающемуся выполнить неправильную операцию. По умолчанию эти сигналы приводят к завершению процесса и созданию дампа оперативной памяти.
Процесс может сам послать сигнал другому процессу. Чаще всего возникает необходимость завершить требуемый процесс с помощью сигнала SIGTERM
или SIGKILL
. [12] В чём между ними разница! Сигнал SIGTERM является запросам на завершение; процесс может его проигнорировать и продолжить свое выполнение.. Сигнал SIGKILL вызывает немедленное безусловное уничтожение процесса и не может быть обработан.
С помощью сигналов можно также передавать команды выполняющимся программам. Для этого существуют "пользовательские" сигналы SIGUSR1
и SIGUSR2
. Иногда в аналогичных целях применяется сигнал SIGHUP
, с помощью которого можно заставить программу повторно прочитать свои файлы конфигурации.
Функция sigaction()
определяет правила обработки указанного сигнала. Первый ее аргумент — это номер сигнала. Следующие два аргумента представляют собой указатели на структуру sigaction
; первый из них регистрирует новый обработчик сигнала, а второй содержит описание предыдущего обработчика. Наиболее важным полем структуры sigaction
является sa_handler
. Оно может содержать одно из трех значений:
■ SIG_DFL
— выбор стандартного обработчика сигнала;
■ SIG_IGN
— игнорирование сигнала,
■ указатель на функцию обработки сигнала; эта функция должна принимать один параметр (номер сигнала) и возвращать значение типа void
.
Поскольку сигнал может прийти в любой момент, он способен застать программу "врасплох" за выполнением критической операции, не подразумевающей прерывание. Такой операцией, к примеру, является обработка предыдущего сигнала. Отсюда правило: следует избегать операций ввода-вывода и вызовов большинства библиотечных и системных функций в обработчиках сигналов.
Обработчик должен выполнять минимум действий в ответ на получение сигнала и как можно быстрее возвращать управление в программу (или просто завершать ее работу). В большинстве случаев обработчик просто фиксирует факт поступления сигнала, а основная программа периодически проверяет, был ли сигнал, и реагирует должным образом.
Тем не менее возможность прерывания обработчика никогда нельзя исключать. Это очень сложная ситуация для диагностирования и отладки (и наглядный пример состояния гонки, о котором пойдет речь в разделе 4.4. "Синхронизация потоков и критические секции"). Необходимо внимательно следить за тем, что именно делается в обработчике.
Даже присвоение значения глобальной переменной несет потенциальную опасность, так как данная операция может занять два или три такта процессора, а за это время успеет прийти следующий сигнал, вследствие чего переменная окажется поврежденной. Если обработчик использует какую-то переменную в качестве флага поступления сигнала, она должна иметь специальный тип sig_atomic_t
. Linux гарантирует, что операция присваивания значения такой переменной займет ровно один такт и не будет прервана. На самом деле тип sig_atomic_t
в Linux эквивалентен типу int
; более того, операции присваивания целочисленных переменных (32- и 16-разрядных) и указателей всегда атомарны. Использовать тип sig_atomic_t
необходимо для того, чтобы программу можно было перенести в любую стандартную UNIX-систему.
В листинге 3.5 представлен шаблон программы, в которой функция-обработчик подсчитывает, сколько раз программа получает сигнал SIGUSR1
.
#include
#include
#include
#include
#include
sig_atomic_t sigusr1_count = 0;
void handler(int signal_number) {
++sigusr1_count;
}
int main() {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = &handler;
sigaction(SIGUSR1, &sa, NULL);
/* далее идет основной текст. */
Интервал:
Закладка: