Марк Митчелл - Программирование для Linux. Профессиональный подход
- Название:Программирование для Linux. Профессиональный подход
- Автор:
- Жанр:
- Издательство:Вильямс
- Год:2002
- Город:Москва
- ISBN:5-8459-0243-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Митчелл - Программирование для Linux. Профессиональный подход краткое содержание
Данная книга в основном посвящена программированию в среде GNU/Linux. Авторы применяют обучающий подход, последовательно излагая самые важные концепции и методики использования расширенных возможностей системы GNU/Linux в прикладных программах. Читатели научатся писать программы, к интерфейсу которых привыкли пользователи Linux; освоят такие технологии, как многозадачность, многопотоковое программирование, межзадачное взаимодействие и взаимодействие с аппаратными устройствами; смогут улучшить свои программы, сделав их быстрее, надежнее и безопаснее; поймут особенности системы GNU/Linux, ее ограничения, дополнительные возможности и специфические соглашения.
Книга предназначена для программистов, уже знакомых с языком С и имеющих базовый опыт работы в GNU/Linux.
Программирование для Linux. Профессиональный подход - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
pthread_t thread1_id;
pthread_t thread2_id;
struct char_print_parms thread1_args;
struct char_print_parms thread2_args;
/* Создание нового потока, отображающего 30000
символов 'x'. */
thread1_args.character = 'x';
thread1_args.count = 30000;
pthread_create(&thread1_id, NULL, &char_print, &thread1_args);
/* Создание нового потока, отображающего
20000 символов 'o'. */
thread2_args.character = 'o';
thread2_args.count = 20000;
pthread_create(&thread2_id, NULL, &char_print, &thread2_args);
/* Убеждаемся, что завершился первый поток. */
pthread_join(thread1_id, NULL);
/* Убеждаемся, что завершился второй поток. */
pthread_join(thread2_id, NULL);
/* Теперь можно спокойно завершать работу. */
return 0;
}
Мораль сей басни такова: убедитесь, что любые данные, переданные потоку по ссылке, не удаляются ( даже другим потоком ) до тех пор, пока поток не завершит свою работу с ними. Это относится как к локальным переменным, удаляемым автоматически при выходе за пределы своей области видимости, так и к динамическим переменным, удаляемым с помощью функции free()
(или оператора delete
в C++).
4.1.3. Значения, возвращаемые потоками
Если второй аргумент функции pthread_join()
не равен NULL, то в него помещается значение, возвращаемое потоком. Как и потоковый аргумент, это значение имеет тип void*
. Если поток возвращает обычное число типа int
, его можно свободно привести к типу void*
, а затем выполнить обратное преобразование по завершении функции pthread_join()
. [13] Данный способ не является стандартным. В обязанности программиста входит убедиться, что в процессе подобных преобразований не произойдет потеря значащих разрядов.
Программа, представленная в листинге 4.4, в отдельном потоке вычисляет n -е простое число и возвращает его в программу. Тем временем функция main()
может продолжать свои собственные вычисления. Сразу признаемся: алгоритм последовательного деления, используемый в функции compute_prime()
, весьма неэффективен. В книгах по численным методам описаны более мощные алгоритмы (например, "решето Эратосфена").
#include
#include
/* Находим простое число с порядковым номером N, где N -- это
значение, на которое указывает параметр ARG. */
void* compute_prime(void* arg) {
int candidate = 2;
int n = *((int*)arg);
while (1) {
int factor;
int is_prime = 1;
/* Проверка простого числа путем последовательного деления. */
for (factor = 2; factor < candidate; ++factor)
if (candidate % factor == 0) {
is_prime = 0;
break;
}
/* Это то простое число, которое нам нужно? */
if (is_prime) {
if (--n == 0)
/* Возвращаем найденное число в программу. */
return (void*)candidate;
}
++candidate;
}
return NULL;
}
int main() {
pthread_t thread;
int which_prime = 5000;
int prime;
/* Запускаем поток, вычисляющий 5000-е простое число. */
pthread_create(&thread, NULL, &compute_prime, &which_prime);
/* Выполняем другие действия. */
/* Дожидаемся завершения потока и принимаем возвращаемое им
значение. */
pthread_join(thread, (void*)&prime);
/* Отображаем вычисленный результат. */
printf("The %dth prime number is %d.\n", which_prime, prime);
return 0;
}
4.1.4. Подробнее об идентификаторах потоков
Иногда в программе возникает необходимость определить, какой поток выполняет ее в данный момент. Функция pthread_self()
возвращает идентификатор потока, в котором она вызвана. Для сравнения двух разных идентификаторов предназначена функция pthread_equal()
.
Эти функции удобны для проверки соответствия заданного идентификатора текущему потоку. Например, поток не должен вызывать функцию pthread_join()
, чтобы ждать самого себя (в подобной ситуации возвращается код ошибки EDEADLK
). Избежать этой ошибки позволяет следующая проверка:
if (!pthread_equal(pthread_self(), other_thread)) pthread_join(other_thread, NULL);
4.1.5. Атрибуты потоков
Потоковые атрибуты — это механизм настройки поведения отдельных потоков. Вспомните, что функция pthread_create()
принимает аргумент, являющийся указателем на объект атрибутов потока. Если этот указатель равен NULL
, поток конфигурируется на основании стандартных атрибутов.
Для задания собственных атрибутов потока выполните следующие действия.
1. Создайте объект типа pthread_attr_t
.
2. Вызовите функцию pthread_attr_init()
, передав ей указатель на объект. Эта функция присваивает неинициализированным атрибутам стандартные значения.
3. Запишите в объект требуемые значения атрибутов.
4. Передайте указатель на объект в функцию pthread_create()
.
5. Вызовите функцию pthread_attr_destroy()
, чтобы удалить объект из памяти. Сама переменная pthread_attr_t
не удаляется; ее можно проинициализировать повторно с помощью функции pthread_attr_init()
.
Один и тот же объект может быть использован для запуска нескольких потоков. Нет необходимости хранить объект после того, как поток был создан.
Для большинства Linux-приложений интерес представляет один-единственный атрибут (остальные используются в приложениях реального времени): статус отсоединения потока . Поток может быть создан как ожидаемый (по умолчанию) или отсоединенный . Ожидаемый поток, подобно процессу, после своего завершения не удаляется автоматически операционной системой Linux. Код его завершения хранится где-то в системе (как у процесса-зомби), пока какой-нибудь другой поток не вызовет функцию pthread_join()
, чтобы запросить это значение. Только тогда ресурсы потока считаются освобожденными. С другой стороны, отсоединенный поток, завершившись, сразу уничтожается. Другие потоки не могут вызвать по отношению к нему функцию pthread_join()
или получить возвращаемое им значение.
Чтобы задать статус отсоединения потока, воспользуйтесь функцией pthread_attr_setdetachstate()
. Первый ее аргумент — это указатель на объект атрибутов потока, второй — требуемый статус. Ожидаемые потоки создаются по умолчанию, поэтому в качестве второго аргумента имеет смысл указывать только значение PTHREAD_CREATE_DETACHED
.
Программа, представленная в листинге 4.5, создает отсоединенный поток, устанавливая соответствующим образом атрибуты потока.
#include
void* thread_function(void* thread_arg) {
/* Тело потоковой функции... */
}
int main() {
pthread_attr_t attr;
pthread_t thread;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
Интервал:
Закладка: