Марк Митчелл - Программирование для Linux. Профессиональный подход
- Название:Программирование для Linux. Профессиональный подход
- Автор:
- Жанр:
- Издательство:Вильямс
- Год:2002
- Город:Москва
- ISBN:5-8459-0243-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Митчелл - Программирование для Linux. Профессиональный подход краткое содержание
Данная книга в основном посвящена программированию в среде GNU/Linux. Авторы применяют обучающий подход, последовательно излагая самые важные концепции и методики использования расширенных возможностей системы GNU/Linux в прикладных программах. Читатели научатся писать программы, к интерфейсу которых привыкли пользователи Linux; освоят такие технологии, как многозадачность, многопотоковое программирование, межзадачное взаимодействие и взаимодействие с аппаратными устройствами; смогут улучшить свои программы, сделав их быстрее, надежнее и безопаснее; поймут особенности системы GNU/Linux, ее ограничения, дополнительные возможности и специфические соглашения.
Книга предназначена для программистов, уже знакомых с языком С и имеющих базовый опыт работы в GNU/Linux.
Программирование для Linux. Профессиональный подход - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сигнальная переменная может вообще не быть связана ни с каким условием, а служить лишь средством блокирования потока до тех пор, пока какой-нибудь другой поток не "разбудит" его. Для этой же цели может использоваться и семафор. Принципиальная разница между ними заключается в том, что семафор "запоминает" сигнал, даже если ни один поток в это время не был заблокирован, а сигнальная переменная регистрирует сигнал только в том случае, если его ожидает какой-то поток. Кроме того, семафор всегда разблокирует лишь один поток, тогда как с помощью функции pthread_cond_broadcast()
можно разблокировать произвольное число потоков.
4.4.7. Взаимоблокировки двух и более потоков
Взаимоблокировка происходит, когда два (или более) потока блокируются в ожидании события, наступление которого на самом деле зависит от действий одного из заблокированных потоков. Например, если поток A ожидает изменения сигнальной переменной, устанавливаемой в потоке Б, а поток Б, в свою очередь, ждет сигнала от потока А, возникает тупиковая ситуация. Ни один из потоков никогда не пошлет сигнал другому. Необходимо тщательно избегать таких ситуаций, потому что их очень трудно обнаруживать.
Чаще всего взаимоблокировка возникает, когда группа потоков пытается захватить один и тот же набор объектов. Рассмотрим, к примеру, программу, в которой два потока, выполняющих разные потоковые функции, должны захватить одни и те же два исключающих семафора. Предположим, ноток А захватывает сначала семафор 1, а затем семафор 2, в то время как поток Б захватывает семафоры в обратном порядке. Возможна достаточно неприятная ситуация, когда после захвата семафора 1 потоком А операционная система активизирует поток Б, который захватит поток 2. Далее оба потока окажутся заблокированными, так как им будет закрыт доступ к семафорам друг друга.
Это пример более общей проблемы взаимоблокировки, которая касается не только объектов синхронизации, таких как исключающие семафоры, но и ряда других ресурсов, в частности блокировок файлов и устройств. Проблема возникает, когда потоки пытаются захватить один и тот же набор ресурсов, но в разной последовательности. Выход заключается в том, чтобы обеспечить согласованный протокол доступа к ресурсам во всех потоках.
4.5. Реализация потоков в Linux
Потоковые функции, соответствующие стандарту POSIX, реализованы в Linux не так, как в большинстве других версий UNIX. Суть в том, что в Linux потоки реализованы в виде процессов. Когда вызывается функция pthread_create()
, операционная система на самом деле создает новый процесс, выполняющий поток. Но это не тот процесс, который создается функцией fork()
. Он, в частности, делит общее адресное пространство и ресурсы с исходным процессом, а не получает их копии.
Сказанное иллюстрирует программа thread-pid
, показанная в листинге 4.15. Она отображает идентификатор главного потока с помощью функции getpid()
и создает новый поток, в котором тоже выводится значение идентификатора, после чего оба потока входят в бесконечный цикл.
#include
#include
#include
void* thread_function(void* arg) {
fprintf(stderr, "child thread pid is %d\n", (int) getpid());
/* Бесконечный цикл. */
while (1);
return NULL;
}
int main() {
pthread_t thread;
fprintf(stderr, "main thread pid is %d\n", (int)getpid());
pthread_create(&thread, NULL, &thread_function, NULL);
/* Бесконечный цикл. */
while (1);
return 0;
}
Запустите программу в фоновом режиме, а затем вызовите команду ps x
, чтобы увидеть список выполняющихся процессов. Не забудьте затем уничтожить программу thread-pid
, так как она потребляет ресурсы процессора. Вот что мы получим:
% cc thread-pid.c -о thread-pid -lpthread
% ./thread-pid &
[1] 14608
main thread pid is 14608
child thread pid is 14610
% ps x
PID TTY STAT TIME COMMAND
14042 pts/9 S 0:00 bash
14068 pts/9 R 0:01 ./thread-pid
14069 pts/9 S 0:00 ./thread-pid
14610 pts/9 R 0:01 ./thread-pid
14611 pts/9 R 0:00 ps x
% kill 14608
[1]+ Terminated ./thread-pid
Строки, начинающиеся с записи [1]
, поступают от интерпретатора команд. Если программа запускается в фоновом режиме, интерпретатор назначает ей номер задания — в данном случае 1 — и сообщает ее идентификатор. Когда фоновое задание завершается, интерпретатор сообщает об этом при вызове первой же команды
Обратите внимание на то, что программе thread-pid
соответствуют три процесса. Первый из них, с идентификатором 14608, — это основной поток программы. Третий, с идентификатором 14610, — это дочерний поток, выполняющий функцию thread_function()
. Что же такое тогда второй поток, с идентификатором 14609? Это "управляющий поток", являющийся частью внутреннего механизма реализации потоков в Linux. Он создается, когда программа вызывает функцию pthread_create()
.
4.5.1. Обработка сигналов
Предположим, что многопотоковая программа принимает сигнал. В каком потоке будет вызван обработчик сигнала? Это зависит от версии UNIX. В Linux поведение программы объясняется тем. что потоки на самом деле реализуются в виде процессов.
Каждый поток в Linux является отдельным процессом, а сигнал доставляется конкретному процессу, поэтому никакой неоднозначности на самом деле нет. Обычно сигнал, поступающий от внешней программы, посылается процессу, управляющему главным потоком программы. Например, если программа с помощью функции fork()
делится на два процесса и дочерний процесс запускает многопотоковую программу, в родительском процессе будет храниться идентификатор главного потока дочернего процесса, и этот идентификатор будет включаться во все сигналы, посылаемые от предка потомку. Этим правилом следует руководствоваться при написании многопотоковых программ для Linux.
Тем не менее подобная особенность реализации библиотеки Pthreads в Linux не согласуется со стандартом POSIX. Нельзя полагаться на нее в программах, рассчитанных на то, чтобы быть переносимыми.
В многопотоковой программе один поток может послать сигнал другому. Для этого предназначена функция pthread_kill()
. Ее первым параметром является идентификатор потока, а второй параметр — это номер сигнала.
4.5.2. Системный вызов clone()
Все потоки, создаваемые в одной программе, являются отдельными процессами, которые делят общее адресное пространство и другие ресурсы. Но дочерний процесс, создаваемый с помощью функции fork()
, получает в свое распоряжение копии ресурсов. Как же реализуются процессы первого типа?
Интервал:
Закладка: