Марк Митчелл - Программирование для Linux. Профессиональный подход

Тут можно читать онлайн Марк Митчелл - Программирование для Linux. Профессиональный подход - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство Вильямс, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Программирование для Linux. Профессиональный подход
  • Автор:
  • Жанр:
  • Издательство:
    Вильямс
  • Год:
    2002
  • Город:
    Москва
  • ISBN:
    5-8459-0243-6
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Марк Митчелл - Программирование для Linux. Профессиональный подход краткое содержание

Программирование для Linux. Профессиональный подход - описание и краткое содержание, автор Марк Митчелл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данная книга в основном посвящена программированию в среде GNU/Linux. Авторы применяют обучающий подход, последовательно излагая самые важные концепции и методики использования расширенных возможностей системы GNU/Linux в прикладных программах. Читатели научатся писать программы, к интерфейсу которых привыкли пользователи Linux; освоят такие технологии, как многозадачность, многопотоковое программирование, межзадачное взаимодействие и взаимодействие с аппаратными устройствами; смогут улучшить свои программы, сделав их быстрее, надежнее и безопаснее; поймут особенности системы GNU/Linux, ее ограничения, дополнительные возможности и специфические соглашения.

Книга предназначена для программистов, уже знакомых с языком С и имеющих базовый опыт работы в GNU/Linux.

Программирование для Linux. Профессиональный подход - читать онлайн бесплатно полную версию (весь текст целиком)

Программирование для Linux. Профессиональный подход - читать книгу онлайн бесплатно, автор Марк Митчелл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В Linux имеется системный вызов flock(), также реализующий операцию блокирования файла. Но у функции fcntl()есть большое преимущество: она работает с файловыми системами NFS [28] NFS (Network File System) — популярная технология совместного использования файлов в сети. (при условии, что сервер NFS имеет относительно недавнюю версию и сконфигурирован правильно). Так что. имея доступ к двум компьютерам, которые монтируют одну и ту же файловую систему через NFS, можно повторить показанный выше пример на двух разных машинах.

8.4. Функции fsync() и fdatasync(): очистка дисковых буферов

В большинстве операционных систем при записи в файл данные не передаются на диск немедленно. Вместо этого операционная система помещает их в резидентный кэш-буфер с целью сокращения числа обращений к диску и повышения оперативности программы. Когда буфер заполнится или произойдет какое-нибудь другое событие (например, истечет определенный промежуток времени), система запишет содержимое буфера на диск в ходе одной непрерывной операции.

В Linux тоже поддерживается такой тип кэширования. Обычно он способствует существенному повышению производительности. Но он же делает ненадежными программы, зависящие от целостности дисковых данных. Если система внезапно выйдет из строя, например вследствие сбоя ядра или отключения питания, любые данные, находящиеся в памяти и еще не записанные на диск, будут потеряны.

Предположим, создается программа обработки транзакций, которая ведет журнальный файл. В этот файл помещаются записи обо всех транзакциях, завершившихся на данный момент, чтобы в случае системного сбоя можно было восстановить целостность данных. Очевидно, не менее важна и целостность самого журнального файла: как только транзакция завершена, запись о ней должна быть немедленно занесена в дисковый файл.

Для реализации такого поведения ОС Linux предоставляет системный вызов fsync(). Эта функция принимает один аргумент — дескриптор записываемого файла — и принудительно переносит на диск все данные этого файла, находящиеся в кэш-буфере. Функция не завершается до тех пор, пока данные не окажутся на диске.

В листинге 8.3 показана функция, использующая данный системный вызов. Она записывает переданную ей строку в журнальный файл.

Листинг 8.3. ( write_journal_entry.c ) Запись строки в журнальный файл с последующей синхронизацией

#include

#include

#include

#include

#include

const char* journal_filename = "journal.log";

void write_journal_entry(char* entry) {

int fd =

open(journal_filename,

O_WRONLY | O_CREAT | O_APPEND, 0660);

write(fd, entry, strlen(entry));

write(fd, "\n", 1);

fsync(fd);

close(fd);

}

Аналогичное действие выполняет другой системный вызов: fdatasync(). Но если функция fsync()гарантирует, что дата модификации файла будет обновлена, то функция fdatasync()этого не делает, а лишь гарантирует запись данных. В принципе это означает, что функция fdatasync()способна выполняться быстрее, чем fsync(), так как ей требуется выполнить одну операцию записи на диск, а не две. Но в настоящее время в Linux обе функции работают одинаково, обновляя дату модификации.

Файл можно также открыть в режиме синхронного ввода-вывода , при котором все операции записи будут немедленно фиксироваться на диске. Для этого в функции open()следует указать флаг O_SYNC.

8.5. Функции getrlimit() и setrlimit(): лимиты ресурсов

Функции getrlimit()и setrlimit()позволяют процессу определять и задавать лимиты использования системных ресурсов. Аналогичные действия выполняет команда ulimit, которая ограничивает доступ запускаемых пользователем программ к ресурсам.

У каждого ресурса есть два лимита: жесткий и нежесткий . Второе значение никогда не может быть больше первого, и лишь процессы с привилегиями супер пользователя имеют право менять жесткий лимит. Обычно приложение уменьшает нежесткий лимит, ограничивая потребление системных ресурсов.

Обе функции принимают два аргумента: код, задающий тип ограничения, и указатель на структуру типа rlimit. Функция getrlimit()заполняет поля этой структуры, тогда как функция setrlimit()проверяет их и соответствующим образом меняет лимит. У структуры rlimitдва поля: в поле rlim_curсодержится значение нежесткого лимита, а в поле rlim_max— значение жесткого лимита.

Ниже перечислены коды наиболее полезных лимитов, допускающих возможность изменения.

RLIMIT_CPU. Это максимальный интервал времени центрального процессора (в секундах), занимаемый программой. Именно столько времени отводится программе на доступ к процессору. В случае превышения данного ограничения программа будет завершена по сигналу SIGXCPU.

RLIMIT_DATA. Это максимальный объем памяти, который программа может запросить для своих данных. Запросы на дополнительную память будут отвергнуты системой.

RLIMIT_NPROC. Это максимальное число дочерних процессов, которые могут быть запущены пользователем. Если процесс вызывает функцию fork(), а лимит уже исчерпал, функция завершается ошибкой.

RLIMIT_NOFILE. Это максимальное число файлов, которые могут быть одновременно открыты процессом.

Программа, приведенная в листинге 8.4, задает односекундный лимит использования центрального процессора, после чего переходит в бесконечный цикл. Как только программа превышает установленный ею же лимит, ОС Linux уничтожает ее.

Листинг 8.4. ( limit-cpu.c ) Задание ограничения на использование нейтрального процессора

#include

#include

#include

int main() {

struct rlimit rl;

/* Определяем текущие лимиты. */

getrlimit(RLIMIT_CPU, &rl);

/* Ограничиваем время доступа к процессору

одной секундой. */

rl.rlim_cur = 1;

setrlimit(RLIMIT_CPU, &rl);

/* Переходим в бесконечный цикл. */

while(1);

return 0;

}

Когда программа завершается по сигналу SIGXCPU, интерпретатор команд выдает поясняющее сообщение:

% ./limit_cpu

CPU time limit exceeded

8.6. Функция getrusage(): статистика процессов

Функция getrusage()запрашивает у ядра статистику работы процессов. Если первый аргумент функции равен RUSAGE_SELF, процесс получит информацию о самом себе. Если же первым аргументом является константа RUSAGE_CHILDREN, будет выдана информация обо всех его завершившихся дочерних процессах. Второй аргумент — это указатель на структуру типа rusage, в которую заносятся статистические данные.

Перечислим наиболее интересные поля этой структуры.

ru_utime. Здесь находится структура типа timeval, в которой указано, сколько пользовательского времени (в секундах) ушло на выполнение процесса. Это время, затраченное центральным процессором на выполнение программного кода, а не системных вызовов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марк Митчелл читать все книги автора по порядку

Марк Митчелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Программирование для Linux. Профессиональный подход отзывы


Отзывы читателей о книге Программирование для Linux. Профессиональный подход, автор: Марк Митчелл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x