Уильям Паундстоун - Найти умного. Как проверить логическое мышление и творческие способности кандидата

Тут можно читать онлайн Уильям Паундстоун - Найти умного. Как проверить логическое мышление и творческие способности кандидата - бесплатно ознакомительный отрывок. Жанр: foreign-business, издательство Array Литагент «Альпина», год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Найти умного. Как проверить логическое мышление и творческие способности кандидата
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9614-3515-3
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Уильям Паундстоун - Найти умного. Как проверить логическое мышление и творческие способности кандидата краткое содержание

Найти умного. Как проверить логическое мышление и творческие способности кандидата - описание и краткое содержание, автор Уильям Паундстоун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Методику интервьюирования при приеме на работу в корпорацию Microsoft, основанную на решении задач и головоломок, теперь перенимают многие компании, которые хотят выявить наиболее творческих кандидатов среди просто способных. В книге «Найти умного» излагается эта методика и предлагается более тридцати трудных задач и головоломок. Книга показывает, как при помощи эффективного творческого и аналитического мышления можно отыскать ответы на самые нестандартные вопросы. Книга ориентирована прежде всего на руководителей компаний, сотрудников отделов кадров, а также людей, которые хотят подготовиться к нестандартным вопросам во время собеседования. В то же время книга будет интересна и широкой аудитории, так как она поможет любому человеку развить свой творческий и интеллектуальный потенциал.

Найти умного. Как проверить логическое мышление и творческие способности кандидата - читать онлайн бесплатно ознакомительный отрывок

Найти умного. Как проверить логическое мышление и творческие способности кандидата - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Уильям Паундстоун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда компаниям, изготавливающим эти банки, пришлось больше заботиться о снижении затрат и охране окружающей среды, они перешли на более тонкие алюминиевые банки. Тонкий алюминий менее прочен. Подобно яичной скорлупе, сегодняшние банки делаются настолько тонкими, насколько это возможно, чтобы надежно сохранять их содержимое. Это требует применения «архитектурных трюков», в которых не было необходимости при использовании стальных банок.

Самая толстая и прочная часть банки – это ее верх, который крепится при помощи обжима. Он должен выдерживать усилие при открывании банки. Поскольку металл верхней крышки банки толще, производитель заинтересован в том, чтобы минимизировать диаметр этой крышки, поэтому диаметр верха немного меньше, чем диаметр середины, и, чтобы их можно было соединить, банка должна сужаться вверху (нельзя уменьшить диаметр всей банки, потому что в нее тогда поместится меньше пива). Но раз уж вы сузили верх, вам придется сделать то же самое и с донышком, чтобы банки можно было ставить друг на друга.

Есть уже одна причина, по которой банка внизу сужается. Донышко и средняя часть банки прессуются из одного листа тонкого алюминия, что позволяет избежать дополнительной операции – крепления донышка к банке. Это проще сделать, если в нижней части банка идет на конус, чем если бы требовался изгиб под прямым углом. Это сужение также делает банку чуть более устойчивой к вмятинам на концах.

Похожий вопрос для интервью: «Почему дно банки для кока-колы вогнуто внутрь?» (У пивных банок такое же вогнутое донышко.) Ответ таков: металл на донышке настолько тонкий, что, если бы донышко было плоским, оно бы легко деформировалось. Вогнутый металл прочнее, чем плоский, точно так же, как выпуклая яичная скорлупа делает его более прочным по сравнению с яйцами, у которых была бы кубическая скорлупа. Прочность не зависит от того, вогнутое донышко или выпуклое, но, если бы донышки были выпуклыми, банки нельзя было бы ставить друг на друга.

? Сколько времени понадобится для того, чтобы передвинуть гору Фудзи?

Похоже, что этот вопрос был придуман в консалтинговой фирме Booz, Allen and Hamilton. Есть два возможных подхода к решению. Если вы решите передвинуть всю гору целиком – таким же способом, как европейские монархи заставляли своих инженеров перевозить в свои столицы египетские обелиски, я желаю вам удачи. В противном случае вы должны применить метод приблизительных вычислений Ферми. Для начала вы будете считать передвижение горы на новое место обычными земляными работами. Вам нужно оценить объем горы Фудзи «в самосвалах».

Отправной точкой для вычислений, вероятно, должен стать знаменитый силуэт горы Фудзи. Большинство американцев представляет его себе как полый конус, основание которого примерно в пять раз больше, чем высота. Большинство людей гораздо хуже может оценить высоту этой горы. Фудзи не может сравниться по этому параметру с самыми высокими горами (высота Эвереста около 29 000 футов, или 8848 метров). Но очевидно, что ее высота несколько тысяч футов. Давайте остановимся на удобном круглом числе 10 000 футов (это хорошая догадка, потому что на самом деле вершина горы Фудзи находится на высоте 12 387 футов над уровнем моря). Это значит, что высота нашего конуса 10 000 футов, а диаметр основания – 50 000 футов.

Если бы гора Фудзи была похожа не на конус, а на цилиндрическую жестянку, ее объем был бы равен произведению площади основания на высоту. Основание – это круг диаметром 50 000 футов. Квадрат со стороной 50 000 футов имел бы площадь 50 000 × 50 000 футов. Это 2,5 млрд квадратных футов. Но площадь круга, вписанного в подобный квадрат, будет меньше (если точно, то она составит π/4 от площади квадрата, или 79 процентов), поэтому давайте оценим ее как 2 млрд квадратных футов. Умножьте это число на высоту 10 000 футов, и вы получите 20 трлн кубических футов – это будет объем цилиндра, в который можно вписать гору Фудзи.

Но гора Фудзи больше похожа на конус. Если вы помните, что объем конуса – это одна треть от объема цилиндра с таким же основанием и высотой, это делает вам честь. Но даже если вы этого не помните, очевидно, что объем конуса должен быть меньше, чем объем эквивалентного цилиндра. Поскольку мы так любим круглые цифры, давайте сократим 20 трлн кубических футов до 10 и будем считать, что объем конуса-горы Фудзи – 10 трлн кубических футов вулканических пород.

Сколько это самосвалов? Самосвал может перевезти объем скальных пород объемом 10 на 10 на 10 футов. Это 1000 кубических футов. Таким образом, для перевозки горы Фудзи потребуется нагрузить 10 млрд самосвалов.

Формулировка вопроса оставляет неопределенными многие параметры. Мы не знаем, куда мы передвигаем гору Фудзи. Попробуйте спросить об этом интервьюера. Мы также не знаем, какую долю объема горы составляет почва, которую легко погрузить экскаватором, а какую – твердые скальные породы, которые придется взрывать динамитом.

Даже в лучшем случае, чтобы нагрузить и перевезти один самосвал, потребуется полный рабочий день одного работника. Если считать, что один груз самосвала эквивалентен одному рабочему дню, то для того, чтобы передвинуть гору Фудзи, понадобится 10 млрд рабочих дней.

Длительность проекта будет зависеть от того, сколько людей станут выполнять эту работу. В абсолютно невероятном случае, если всю эту работу будет выполнять только один человек (естественно, таких людей придется после смерти заменять, подобно смотрителям маяков, на протяжении многих тысячелетий), для завершения работы понадобится 10 млрд дней, или примерно 30 млн лет. (Гора Фудзи, вероятно, столько времени и не существовала и вряд ли просуществует в своем нынешнем виде так долго. Она по естественным причинам исчезнет еще до того, как один человек сумеет ее передвинуть.)

Если будет реализован не менее невероятный вариант и удастся привлечь к этой работе все 6 миллиардов людей, населяющих земной шар (а также снабдить их необходимым оборудованием и сделать так, чтобы они не мешали друг другу), гору можно будет передвинуть за пару дней.

Представьте теперь, что правительство Японии решило передвинуть гору Фудзи и привлекло для решения этой задачи достаточно солидные ресурсы. 10 000 человек – примерно столько людей работает в больших корпорациях – это будет хорошая оценка. Им потребуется для решения задачи 10 млрд/10 000 дней. Это 1 млн дней, или примерно 3000 лет.

? В коридоре три выключателя…

Это еще одна задача, которая кажется не имеющей решения. Если вы выключите все выключатели, то свет не будет гореть (и ваш поход в комнату вам ничего не скажет). Если же вы включите один из выключателей, вероятность того, что вы выбрали нужный, – один к трем. Если повезет, то свет будет гореть, и вы найдете нужный выключатель, но в двух из трех случаев свет гореть не будет, и у вас не будет возможности определить, какой из двух выключенных выключателей включает свет в комнате. Если вы включите два из трех выключателей или все три, то столкнетесь со сходными проблемами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Уильям Паундстоун читать все книги автора по порядку

Уильям Паундстоун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Найти умного. Как проверить логическое мышление и творческие способности кандидата отзывы


Отзывы читателей о книге Найти умного. Как проверить логическое мышление и творческие способности кандидата, автор: Уильям Паундстоун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x