Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Тут можно читать онлайн Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая вселенная. Как устроено то, что мы не можем увидеть
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-080-8
  • Рейтинг:
    3.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть краткое содержание

Квантовая вселенная. Как устроено то, что мы не можем увидеть - описание и краткое содержание, автор Джефф Форшоу, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.
Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.
На русском языке публикуется впервые.

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать онлайн бесплатно полную версию (весь текст целиком)

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать книгу онлайн бесплатно, автор Джефф Форшоу
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Формула Планка предполагает (хотя он не имел об этом представления), что свет всегда излучается и поглощается пакетами, или квантами. В современной записи эти пакеты обладают энергией E = hc / λ , где λ – длина световой волны (произносится «лямбда»), c – скорость света, а h – постоянная Планка.

Роль постоянной Планка в этом уравнении – быть коэффициентом преобразования длины световой волны в энергию соответствующего кванта. Предположение, что определенное Планком квантование энергии испускаемого света возникает, потому что сам свет тоже состоит из частиц, было очень осторожно выдвинуто Альбертом Эйнштейном. Он сделал это предположение в 1905 году, в чудесный год вспышки своего творческого гения, когда он сформулировал также специальную теорию относительности и самое знаменитое уравнение в истории науки: E = mc ². Правда, Нобелевскую премию 1921 года по физике (которая из-за каких-то хитрых бюрократических уловок была вручена только в 1922-м) Эйнштейн получил за работу над фотоэффектом, а не за более известные теории относительности. Ученый предположил, что свет можно рассматривать как поток частиц (в то время он не использовал термин «фотоны»), и верно осознал, что энергия каждого фотона обратно пропорциональна длине волны. Эта идея Эйнштейна стала источником одного из самых знаменитых парадоксов квантовой теории, в которой частицы ведут себя как волны, и наоборот.

Планк разрушил первые камни в основании Максвеллова представления о свете, показав, что энергия света, излучаемого нагретым телом, может быть описана, только если она испускается квантами. Окончательно разметал весь фундамент классической физики Эйнштейн. Его интерпретация фотоэлектрического эффекта заключалась не только в том, что свет испускается малыми порциями, но и в том, что он взаимодействует с материей в форме локализованных пакетов. Иными словами, свет действительно ведет себя как поток частиц.

Идея о том, что свет состоит из частиц (можно сказать, что «электромагнитное поле квантовано») звучала глубоко противоречиво, и правота Эйнштейна была признана лишь через несколько десятилетий. Так же неохотно, как они соглашались с идеей фотона, одним из соавторов которой стал сам Планк, в 1913 году коллеги Эйнштейна представляли его к членству в престижной Прусской академии (это было спустя целых восемь лет после введения понятия фотона):

«В целом можно сказать, что, кажется, нет ни одной крупной проблемы, на которые так богата современная физика, где Эйнштейн не отметился бы значительным вкладом. То, что порой его рассуждения могут оказываться несколько бесцельными, как, например, гипотеза световых квантов, нельзя рассматривать в качестве аргумента против него, потому что невозможно предлагать действительно новые идеи даже в самых точных науках, полностью исключая любой риск».

Иными словами, на самом деле в реальность фотонов никто не верил. Широко распространено было мнение о том, что предположение Планка относилось больше к свойствам материи – мельчайшим осцилляторам, испускающим свет, – чем к собственно свету. Было попросту слишком странно считать, что замечательные волновые уравнения Максвелла подлежат замене теорией частиц.

Мы рассказываем эту историю во многом для того, чтобы подтвердить: осознать квантовую теорию сложно всем и всегда. Визуализировать такие объекты, как электрон или фотон, нереально: они ведут себя то как частица, то как волна, а иногда как ни то ни другое. Эйнштейна этот вопрос беспокоил до конца жизни. В 1951 году, за четыре года до смерти, он писал: «Все 50 лет труда не приблизили меня к ответу на вопрос: что же такое световые кванты?»

Сейчас, спустя еще 60 лет, не возникает сомнения, что теория, которую мы продолжаем разрабатывать с помощью множества мельчайших циферблатов, безошибочно описывает результаты каждого эксперимента, поставленного для ее проверки.

Обратно, к принципу неопределенности Гейзенберга

Такова вкратце история введения постоянной Планка. Но для наших целей важнее всего отметить, что постоянная Планка – это единица «действия», то есть та же величина, которая говорит нам, насколько нужно повернуть часы. Современное значение постоянной Планка равно 6,626 × 10–34 кг·м²/с, что является крошечной величиной по меркам повседневности. Это и служит причиной того, почему мы не замечаем в повседневной жизни ее всепроникающего действия.

Вспомните, что мы писали о действии, соответствующем прыжку частицы из одной точки в другую: оно равно массе частицы, умноженной на квадрат расстояния, на которое совершен прыжок, и деленной на временной интервал, в течение которого этот прыжок происходит. Измеряется оно в кг·м²/с, как и постоянная Планка, так что если мы просто разделим действие на постоянную Планка, то все единицы сократятся и получится чистое число. Согласно Фейнману, это чистое число и есть та самая величина, на которую мы должны перевести стрелку, соответствующую частице, которая прыгает с одного места на другое. Например, если число равно 1, это значит один полный оборот, а если ½, то пол-оборота, и т. д. В символической форме точная величина, на которую мы должны перевести стрелку часов для расчета вероятности прыжка частицы на расстояние x за время t , равна mx ² / (2 ht) .

Заметьте: в формуле появляется дробь ½. Вы можете либо принять на веру, что она необходима для достижения соответствия экспериментальным данным, либо заметить, что она возникает из самого определения действия [12] Для частицы массой m , которая покрывает расстояние x за время t , действие составляет 1 / 2 m ( x / t )² t , если частица движется по прямой с постоянной скоростью. Но это не значит, что квантовая частица действительно перемещается с места на место по прямым линиям. Правило хода часов выводится из соотнесения циферблатов со всеми возможными маршрутами, которыми частица может следовать между двумя точками, и лишь случайно после суммирования всех остальных траекторий результат оказывается настолько прост. Например, правило хода часов будет не настолько простым, если мы примем поправки для достижения соответствия специальной теории относительности Эйнштейна. . Оба варианта прекрасно подойдут. Сейчас, когда мы знаем значение постоянной Планка, можно точно вычислить величину поворота стрелки часов и коснуться вопроса, который чуть раньше оставили без ответа. А именно: что такое прыжок на расстояние «10»?

Посмотрим, что наша теория говорит о маленьком по повседневным нормам объекте – о песчинке. Теория квантовой механики, которую мы разработали, предполагает, что, если поместить песчинку в какую-то точку, позднее она может оказаться в любом другом месте Вселенной. Но очевидно, что с настоящими песчинками так не происходит. Мы уже видели способ выхода из этой потенциальной проблемы, потому что если интерференция между циферблатами, соответствующими песчинке, перепрыгивающей из множества изначальных точек, достаточна, то при сложении циферблатов они все отменяют друг друга, и песчинка остается на месте.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джефф Форшоу читать все книги автора по порядку

Джефф Форшоу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая вселенная. Как устроено то, что мы не можем увидеть отзывы


Отзывы читателей о книге Квантовая вселенная. Как устроено то, что мы не можем увидеть, автор: Джефф Форшоу. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x