Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Тут можно читать онлайн Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Литагент АСТ, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2016
  • Город:
    М.
  • ISBN:
    978-5-17-095136-9
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса краткое содержание

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - описание и краткое содержание, автор Марио Ливио, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать онлайн бесплатно полную версию (весь текст целиком)

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать книгу онлайн бесплатно, автор Марио Ливио
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кетле сделал и более смелые выводы. Он решил, что если черты и качества человека описываются кривой ошибок, значит, «средний человек» – это тип, который природа стремится породить [87] В своей статье о склонности к правонарушениям Кетле писал: «Если бы удалось вывести среднего человека для какого-то народа, он представлял бы тип этого народа, если бы его удалось вывести из случайного собрания людей, он представлял бы весь род человеческий» . По мысли Кетле, подобно тому, как при производстве гвоздей погрешности изготовления приводят к некоему распределению колебаний длины гвоздя возле средней (правильной) длины, ошибки природы распределены вокруг некоего предпочтительного биологического типа. Кетле объявил, что представители одного народа стремятся к какому-то среднему показателю, «словно результаты измерений одного и того же человека при помощи инструментов, грубость которых объясняла бы разброс отклонений».

Очевидно, это было все же слишком смелое обобщение. Конечно, Кетле открыл, что биологические характеристики, и физические, и психологические, распределяются по нормальной кривой частот, и это было необычайно важное открытие, однако нельзя ни считать его доказательством намерений матери-природы, ни рассматривать отдельные вариации просто как ошибки. Скажем, Кетле обнаружил, что средний рост французских призывников составляет пять футов четыре дюйма. Однако на левом конце кривой он обнаружил человека ростом в один фут пять дюймов. Очевидно, нельзя списывать это на ошибку в четыре фута, допущенную при измерении роста в пять футов четыре дюйма.

Даже если пренебречь идеей «законов», которые определяют создание людей по одному шаблону, уже одно то, что распределение самых разных свойств – от веса до IQ – следует одной и той же нормальной кривой, само по себе примечательно. Но этого мало – даже распределение среднего уровня успешных подач в высшей бейсбольной лиге и то более или менее нормально, равно как и доходность фондовых индексов (которые составляются из множества отдельных фондов). Более того, если распределение отклоняется от нормальной кривой, его, как правило, надо основательно проверить. Например, если распределение оценок по английскому языку в какой-то школе отличается от нормального, это наводит на мысль о проверке принятых там правил выставления оценок. Однако это не означает, что все распределения нормальны. Распределение длин слов, которые Шекспир употреблял в своих пьесах, не нормально. Слов из трех-четырех букв у него гораздо больше, чем слов из одиннадцати-двенадцати букв. Среднегодовой доход на семью в США тоже распределяется не в соответствии с нормальной кривой. Например, в 2006 году самые богатые 6,37 % домохозяйств получали примерно треть всего дохода. Это наталкивает на интересный вопрос: если и физические, и интеллектуальные качества людей (определяющие, надо думать, потенциальные способности получать доход) подчиняются нормальному распределению, почему с доходом все иначе? Ответы на подобные социально-экономические вопросы, к сожалению, выходят за рамки этой книги. С нашей нынешней – несколько ограниченной – точки зрения удивляться следует уже тому, что, похоже, все физически измеримые особенности людей, растений и животных (той или иной разновидности) распределяются по одной-единственной математической функции.

Исторически человеческие характеристики служили основой не только для изучения статистических частотных распределений, но и для формулировки математического понятия корреляции . Корреляция – это степень, в которой изменения значения одной переменной приводят к изменениям другой. Например, чем выше женщина, тем больше у нее должен быть размер обуви. Подобным же образом психологи обнаружили корреляцию между интеллектом родителей и школьной успеваемостью детей.

Понятие корреляции особенно полезно в ситуациях, когда между двумя переменными нет точной функциональной взаимозависимости. Например, представим себе, что одна переменная – максимальная дневная температура на юге Аризоны, а другая – количество лесных пожаров в том регионе. Невозможно предсказать, какое количество лесных пожаров возникает при данной температуре, поскольку количество пожаров зависит и от других переменных, в частности, от влажности воздуха и от количества костров, которые разжигают люди. Иначе говоря, любому значению температуры соответствует разное количество лесных пожаров и наоборот. И все же математическое понятие коэффициента корреляции позволяет нам количественно измерить прочность отношений между двумя подобными переменными.

Коэффициент корреляции ввел в арсенал математиков викторианский географ, метеоролог, антрополог и статистик сэр Фрэнсис Гальтон (1822–1911) [88] О деятельности Гальтона и Пирсона популярно рассказано в Kaplan and Kaplan 2006. . Гальтон – кстати, двоюродный брат Чарльза Дарвина – не был профессиональным математиком. Он был человек сугубо практического склада и обычно предоставлял другим математикам доводить свои новаторские понятия до совершенства; особенно ему помогал в этом статистик Карл Пирсон (1857–1936). Вот как Гальтон объяснял понятие корреляции.

Длина локтя коррелирует с телосложением, поскольку длинный локоть обычно предполагает высокий рост. Если корреляция между ними очень тесная, то очень длинный локоть обычно предполагает очень высокий рост, однако если бы она была не очень тесная, то очень длинный локоть в среднем связывался бы всего лишь с высоким, но не с очень высоким ростом, тогда как если бы она была нулевая, то очень длинный локоть не был бы связан ни с какими особенностями роста, а следовательно, в среднем, был бы связан с заурядным ростом.

В дальнейшем Пирсон дал точное математическое определение коэффициента корреляции. Этот коэффициент определяется таким образом, что когда корреляция очень высока – то есть когда колебания одной переменной очень точно следуют за взлетами и падениями другой, – коэффициент приобретает значение 1. Если же две величины антикоррелированы , то есть одна величина возрастает, когда другая уменьшается, и наоборот, коэффициент равен –1. Если две переменные ведут себя так, будто другой и вовсе не существует, коэффициент корреляции равен 0 (например, поведение иных правительств, к сожалению, демонстрирует практически нулевую корреляцию с пожеланиями народа, который они якобы представляют).

От выявления и вычисления корреляций в наши дни зависят и медицинские исследования, и экономические прогнозы. Например, связь между курением и раком легких и загаром и раком кожи изначально была выявлена благодаря обнаружению и вычислению корреляций. Биржевые аналитики постоянно пытаются найти и вычислить корреляции между поведением рынка и другими переменными – и любое подобное открытие приносит фантастические прибыли.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марио Ливио читать все книги автора по порядку

Марио Ливио - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса отзывы


Отзывы читателей о книге Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса, автор: Марио Ливио. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x