Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
- Название:Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2016
- Город:М.
- ISBN:978-5-17-095136-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса краткое содержание
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.
Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Здесь Рассел утверждает, что, в сущности, математику можно свести к логике. Иначе говоря, основные понятия математики, даже такие объекты, как, например, числа, можно на самом деле определить в терминах фундаментальных законов рассуждения. Более того, впоследствии Рассел утверждал, что можно сочетать такие определения с логическими принципами – и породить математические теоремы. Первоначально такое представление о природе математики (так называемый логицизм ) пользовалось благосклонностью как тех, кто считал математику не более чем сложной игрой, целиком и полностью изобретенной людьми (то есть формалистов ), так и обеспокоенных платоников. Первые поначалу обрадовались, когда увидели, как собрание не связанных друг с другом на первый взгляд «игр» объединяется в одну «праматерь всех игр». Последние увидели луч надежды в идее, что вся математика, вероятно, коренится в одном источнике, в котором можно не сомневаться. В глазах платоников это повышало шансы на существование единого метафизического источника. Нечего и говорить, что единый корень математики мог, по крайней мере, в принципе, подсказать, в чем причина ее могущества.
Для полноты картины отмечу, что была еще одна школа мысли под названием интуиционизм , которая всячески противостояла и логицизму, и формализму. Вдохновителем этой школы был голландский математик Лёйтзен Э. Я. Брауэр (1881–1966), отличавшийся некоторым фанатизмом [119] Интуиционистская программа Брауэра прекрасно пересказана в van Stegt 1998. Превосходное популярное описание – Barrow 1992. Дебаты между формалистами и интуиционистами популярно описаны в Hellman 2006.
. Брауэр был убежден, что натуральные числа выведены из интуитивных представлений человека о времени и дискретных моментах нашего опыта. С его точки зрения вопрос о том, что математика есть результат человеческой мысли, решался однозначно, поэтому он не видел никакой необходимости в универсальных логических законах наподобие тех, которые представлял себе Рассел. Однако Брауэр пошел гораздо дальше и объявил, что единственные осмысленные математические сущности – это те, которые можно эксплицитно построить на основе натуральных чисел посредством конечного числа шагов. Поэтому он отвергал огромные области математики, для которых были невозможны конструктивные доказательства. Брауэр отвергал и другое логическое понятие – принцип исключенного третьего , согласно которому любое утверждение либо истинно, либо ложно. По Брауэру, напротив, допускались утверждения, которые пребывают в каком-то третьем, лимбическом состоянии, в котором они «остаются нерешенными». Из-за подобных ограничений интуиционистская школа мысли оказалась несколько маргинальной. Тем не менее интуиционистские идеи предвосхищали некоторые открытия в когнитивной психологии, касавшиеся вопроса о том, как люди приобретают математические знания (об этом мы поговорим в главе 9), а кроме того, повлияли на рассуждения некоторых современных философов математики, в частности Майкла Даммита. Даммит придерживался в основном лингвистического подхода и настаивал, что «значение математического утверждения определяет его применение и в то же время полностью определяется этим применением». [120] Даммит добавляет, что «индивидуум не может коммуницировать то, что невозможно коммуницировать так, чтобы эту коммуникацию нельзя было пронаблюдать: если индивидуум ассоциирует с математическим символом или формулой какое-то ментальное содержание, то в случае, если ассоциация не лежит в области применения, которое он находит этому символу или формуле, он не может передать содержание средством этого символа или формулы, поскольку его аудитория не будет ничего знать об этой ассоциации, и у нее не будет никакой возможности узнать о ней» (Dummett 1978).
Но как же возникло такое тесное партнерство между математикой и логикой? И жизнеспособна ли вообще программа логицизма? Позволю себе дать краткий обзор основных вех за последние четыре столетия.
Логика и математика
Традиционно предметом логики были отношения между понятиями и суждениями и процессы, которые позволяли выделить из этих отношений обоснованные следствия. [121] Необычайно простое и доступное введение в логику см. в Bennett 2004. Более специализированное, но все же блистательное – Quine 1982. Хороший обзор истории логики можно найти в 15-м издании «Encyclopaedia Britannica» (его написал Чеслав Леевский).
Приведу простой пример: силлогизмы общего вида «всякий икс – игрек; некоторые зеты – иксы; следовательно, некоторые зеты – игреки» построены таким образом, что автоматически обеспечивают истинность заключения, если верны посылки. Например, «Любой биограф – писатель; некоторые политики – биографы; следовательно, некоторые политики – писатели» приводит к истинному заключению. С другой стороны, силлогизмы общего вида «всякий икс – игрек; некоторые зеты – игреки; следовательно, некоторые зеты – иксы» ложны, поскольку можно привести примеры, когда заключение, несмотря на истинность посылок, окажется ложным. Например, «Любой человек – млекопитающее, некоторые рогатые животные – млекопитающие; следовательно, некоторые рогатые животные – люди».
Если соблюдаются некоторые правила, истинность вывода не зависит от темы утверждений. Рассмотрим следующий силлогизм.
– Убийца миллиардера – либо дворецкий, либо его собственная дочь.
– Дочь не убивала миллиардера.
– Следовательно, убийца – дворецкий.
Он позволяет получить истинный вывод. Обоснованность этого вывода никак не зависит ни от нашего мнения о дворецком, ни от отношений миллионера с дочерью. Обоснованность обеспечена тем, что посылки общего вида «если или p , или q , но при этом не q , следовательно, p » приводят к логически истинному утверждению.
Вероятно, вы заметили, что в первых двух примерах иксы, игреки и зеты играли роли, очень похожие на роли переменных в математических уравнениях: они отмечают места, куда можно вставлять выражения, точно так же, как вместо переменных в алгебре можно подставлять их численные значения. Подобным же образом истинность силлогизма «если или p, или q, но при этом не q, следовательно, p » напоминает аксиомы евклидовой геометрии. И все же нужно было провести в размышлениях о логике почти два тысячелетия, прежде чем математики отнеслись к этой аналогии с должной серьезностью.
Первым, кто сделал попытку свести эти две дисциплины – логику и математику – в одну «универсальную математику», был немецкий математик и философ-рационалист Готфрид Вильгельм Лейбниц (1646–1716). Лейбниц получил юридическое образование и математикой, физикой и философией занимался по большей части в свободное время. При жизни он был известен в основном тем, что независимо и почти одновременно с Ньютоном вывел основы дифференциального и интегрального исчисления (что привело к жарким спорам за право первенства). В статье, которую Лейбниц практически целиком продумал еще в шестнадцать лет, он исследовал универсальный логический язык – так называемую «универсальную характеристику» ( characteristica universalis ), – по его мнению, идеальный инструмент мышления. План Лейбница состоял в том, чтобы выражать простые идеи и понятия символами, а более сложные – сочетаниями основных символов. Лейбниц рассчитывал, что сможет буквально вычислить истинность любого утверждения и любой научной дисциплины при помощи одних лишь алгебраических операций. Он предсказывал, что при наличии адекватных логических вычислительных методов философские споры будут решаться подсчетом. К сожалению, в полной мере разработать свою алгебру логики Лейбниц так и не сумел. Помимо общего принципа «алфавита мыслей», ему принадлежат две заслуги: он четко сформулировал, когда надо считать, что две вещи равны, и признал очевидный на первый взгляд факт, что никакое утверждение не может быть одновременно истинным и ложным. Поэтому при всей своей занимательности идеи Лейбница прошли по большей части незамеченными.
Читать дальшеИнтервал:
Закладка: