Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
- Название:Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2016
- Город:М.
- ISBN:978-5-17-095136-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса краткое содержание
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.
Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
125
Frege 1879. Это одна из самых важных работ в истории логики.
126
Общее изложение идей и языка Фреге см. в Resnik 1980, Demopoulos and Clark 2005, Zalta 2005 и 2007 и Boolos 1985. Прекрасный общий обзор математической логики – DeLong 1970.
127
Парадокс Рассела, его следствия и возможные выходы из положения обсуждаются, например, в Boolos 1999, Clark 2002, Sainsbury 1988 ии Irvine 2003.
128
Whitehead and Russell 1910. Популярный, но очень познавательный сжатый пересказ содержания «Оснований» см. Russell 1919.
129
Сравнение идей Рассела и Фреге см. в Beaney 2003. Обзор логицизма Рассела см. в Shapiro 2000 и Godwyn and Irvine 2003.
130
Прекрасное разъяснение можно найти в Urquhart 2003.
131
Теория типов и в самом деле уже не пользуется благосклонностью большинства математиков. Однако очень похожая конструкция постоянно находит себе применение в программировании. См., например, Mitchell 1990.
132
Описание научных достижений Цермело см. в Ewald 1996.
133
Переводы статей Цермело, Френкеля и логика Туральфа Скулема на английский язык можно найти в van Heijenoort 1967. Относительно щадящее введение в теорию множеств и систему аксиом Цермело-Френкеля см. в Devlin 1993.
134
Подробнейшее обсуждение этой аксиомы см. в Moore 1982.
135
Кантор придумал способ сравнивать мощность бесконечных множеств. В частности, он доказал, что мощность множества вещественных чисел больше, чем множества целых. Затем он сформулировал континуум-гипотезу, согласно которой не существует множества, мощность которого лежит строго между мощностями множеств целых и вещественных чисел. Когда Давид Гильберт в 1900 году составил свой знаменитый список нерешенных проблем математики, вопрос о том, верна ли континуум-гипотеза, стоял на первом месте. Относительно недавнее обсуждение этой проблемы можно найти в Woodin 2001a, b.
136
Прекрасное описание программы Гильберта можно найти в Sieg 1988. Превосходный обзор истории математики до наших дней и разбор противоречий между логицизмом, формализмом и интуиционизмом представлены в Shapiro 2000.
137
Эту лекцию Гильберт прочитал в Лейпциге в сентябре 1922 года. Текст опубликован, в частности, в Ewald 1996.
138
Хороший обзор формализма как учения – Detlefsen 2005.
139
Прекрасную биографию Витгенштейна написал Рэй Монк (Monk 1990).
140
Недавно составленная биография Гёделя – Goldstein 2005. Стандартной биографией считается Dawson 1997.
141
В число прекрасных книг о теоремах Гёделя, их смысле и связи с другими отраслями знания входят Hofstadter 1979, Nagel and Newman 1959 и Franzén 2005.
142
Подробное описание философских воззрений Гёделя и того, как он соотносил философские идеи с основами математики, см. в Wang 1996.
143
Очевидно, что это колоссальное упрощенчество, дозволительное лишь в популярной книге. На самом же деле серьезные попытки оправдать логицизм продолжаются по сей день. Обычно они предполагают, что многие математические истины познаваемы априорно. См., например, Wright 1997 и Tennant 1997.
144
Интересная книга о вязании морских узлов – Ashley 1944.
145
Vandermonde 1771. Превосходный обзор истории теории узлов можно найти в Przytycki 1992. Введение в саму теорию, изложенное живо и весело, представлено в Adams 1994. Популярные книги по этой теме – Neuwirth 1979, Peterson 1988 и Menasco and Rudolph 1995.
146
Прекрасный обзор представлен в Sossinsky 2002 и Atiyah 1990.
147
Tait 1898, Sossinsky 2002. Краткую и отлично написанную биографию Тэта можно найти в O’Connor and Robertson 2003.
148
Сугубо научное, но все же элементарное введение в топологию – Messer and Straffin 2006.
149
В частности, математик Луис Кауфман показал, что есть связь между многочленом Джонса и статистической физикой. Kauffman 2001 – превосходная, однако сугубо научная книга о применении многочлена Джонса в физике.
150
О теории узлов и роли ферментов прекрасно рассказано в Summers 1995. См. также Wasserman and Cozzarelli 1986.
151
Великолепное популярное введение в теорию струн и описание всех ее сильных и слабых сторон – Greene 1999, Randall 2005, Krauss 2005 и Smolin 2006. Научное введение в теорию струн – Zweibach 2004.
152
Atiyah 1989; более подробно – Atiyah 1990.
153
Основные идеи общей и специальной теории относительности описаны во множестве работ. Перечислю лишь некоторые, особенно мне полюбившиеся: Davies 2001, Deutsch 1997, Ferris 1997, Gott 2001, Greene 2004, Hawking and Penrose 1996, Kaku 2004, Penrose 2004, Rees 1997 и Smolin 2001. Недавно вышла чудесная книга с превосходным описанием и Эйнштейна как человека, и его идей – Isaacson 2007. Однако великолепные книги об Эйнштейне и его мировоззрении, разумеется, публиковались и раньше: Bodanis 2000, Lightman 1993, Overbye 2000 и Pais 1982. Прекрасное собрание статей Эйнштейна – Hawking 2007.
154
Прекрасное описание можно найти в Weinberg 1993.
155
Один из лучших обзоров диспутов о природе математики можно найти в Barrow 1992. Несколько более научный, но все же доступный очерк основных идей дан в Kline 1972.
156
Многие темы этой книги прекрасно раскрыты в Barrow 1992.
157
Подробнейшее описание понятия золотого сечения, его истории и свойств см. в Livio 2002, а также в Herz-Fischler 1998.
158
Интересные идеи по этому поводу изложены в статье Иегуды Рава в Hersh 2000.
159
Популярно об этом рассказано в Hockett 1960.
160
Доступное и хорошо изложенное обсуждение вопросов нейролингвистики можно найти у Obler and Gjerlow 1999.
161
Схожесть языка и математики обсуждается в Sarrukai 2005 и Atiyah 1994.
162
Chomsky 1957. Если вас больше интересует лингвистический аспект, можно найти прекрасное описание в Aronoff and Rees-Miller 2001. Очень интересная научно-популярная точка зрения представлена в Pinker 1994.
163
Тегмарк выделяет четыре различных типа параллельных вселенных. Вселенные «Уровня I» – это вселенные с теми же законами физики, но иными начальными условиями. На «Уровне II» находятся вселенные с теми же физическими равенствами, но, вероятно, с другими фундаментальными постоянными. На «Уровне III» задействована «многомировая интерпретация» квантовой механики, а на «Уровне IV» – другие математические структуры. Tegmark 2004, 2007b.
164
Превосходный обзор этой темы см. в Vilenkin 2006.
165
Некоторые мнения я не обсуждаю. Например, Стейнер (Steiner 2005) утверждает, что Вигнер не доказывает, что примеры, которые он приводит, имеют какое-то отношение к тому, что эти понятия именно математические.
166
Gross 1988. Более углубленный разбор отношений между физикой и математикой можно найти в Vafa 2000.
Читать дальшеИнтервал:
Закладка: