Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной

Тут можно читать онлайн Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство АСТ, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Ошибка Коперника. Загадка жизни во Вселенной
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-091484-5
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной краткое содержание

Ошибка Коперника. Загадка жизни во Вселенной - описание и краткое содержание, автор Калеб Шарф, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Одиноки ли мы во Вселенной? Какие условия необходимы, чтобы возникла планета, пригодная для жизни? Надеется ли современная наука на встречу с внеземным разумом? И прав ли был Николай Коперник, когда утверждал, что мы сами и наше место в мироздании ничем не примечательны? Чтобы ответить на эти вопросы, астроном и астробиолог Калеб Шарф приглашает читателя в увлекательное путешествие по последним достижениям самых разных наук – от истории естествознания до космологии и от вирусологии до ядерной физики.

Ошибка Коперника. Загадка жизни во Вселенной - читать онлайн бесплатно ознакомительный отрывок

Ошибка Коперника. Загадка жизни во Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Калеб Шарф
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ученые много и тщательно исследуют, какими свойствами должен был обладать последний универсальный общий предок – от требований к его генетическому молекулярному арсеналу до его физиологии. Однако тут все очень запутано. Например, ученые, исследующие генетическое разнообразие жизни, до сих пор до конца не уверены, что если крутить стрелки биомолекулярных часов все дальше и дальше в прошлое, все ветви древа жизни и в самом деле аккуратно сойдутся в одной точке, к одному ясно определимому виду. Скорее всего, имели место всевозможные инцестуальные метания в пределах небольшого генофонда, которые при этом не противоречат статистическим выводам. При таком развитии событий гены передавались «горизонтально» от особи к особи, от линии к линии, и отдельные истории сплетались и перепутывались в симбиотических или паразитических союзах.

Как бы то ни было, если мы углубимся еще дальше в прошлое, то наткнемся на явление, которое, как считают современные биологи, скорее всего, было переходным этапом от более ранней формы жизни – до видообразования. Это стадия еще до последнего универсального общего предка: как мы теперь считаем, это был самый настоящий вид одноклеточных с ДНК и всем, что полагается. Типичная гипотеза, родившаяся в результате попыток представить себе стадию до последнего универсального общего предка – это идея «мира РНК» [184] Об этой гипотезе, восходящей под разными обличьями к шестидесятым годам ХХ века, написано очень много. Термин «мир РНК» был впервые использован в статье Walter Gilbert. Origin of Life: The RNA World // Nature 319 (1986): 618. , которую выдвинул в шестидесятые годы Карл Вёзе. РНК – это «третья» главная молекулярная структура в современной жизни наряду с ДНК и белками. Во многих отношениях РНК представляет собой что-то вроде ДНК, только короткой, из одной цепочки и с несколько иным составом. Однако на самом деле это совсем другая молекула. Она играет главную роль в передаче информации от ДНК к белкам: цепочки РНК записывают код с ДНК, а затем их «читают» молекулярные механизмы под названием рибосомы, которые, словно швейные машинки, сшивают новые белки на основе информации от РНК.

Гипотетический мир РНК был своего рода фабрикой по производству пробных моделей форм жизни на основе ДНК, арсенал всевозможных взаимодействующих структур на заре клеточной жизни. Такого рода сложные молекулярные экосистемы имели место во времена гораздо ближе к точке зарождения жизни, однако и они были продуктом эволюции из чего-то еще. А это «что-то еще», возможно, возникло из первых липидов и клеточных мембран и первых самовоспроизводящихся молекул, созданных из аминокислотного сырья. Об этом мы пока ничего не знаем.

Итак, на пути к истокам жизни мы наблюдаем, как картина стремительно усложняется. Никаких ископаемых останков, относящихся к периоду 3,5–4 миллиарда лет назад, не сохранилось, хотя одна группа геологов утверждает, будто обнаружила ископаемые клетки [185] См. сноску о структурах пород, сформированных колониями бактерий на с. 263. Недавно палеонтологи заявили, что обнаружили ископаемые остатки клеток бактерий, перерабатывавших серу, возрастом 3,4 миллиарда лет, а также (независимо) сетевидные узоры в скальных породах – следы жизнедеятельности микробов – возрастом 3,49 миллиарда лет. И то и другое найдено при раскопках в регионе Пилбара в Западной Австралии. в австралийских скальных породах возрастом в 3,4 миллиарда лет. В нашем распоряжении лишь химические осадки и минеральные структуры, оставшиеся от колоний одноклеточных организмов или чего-то, что им предшествовало. В результате нам приходится экстраполировать молекулярные эквиваленты ископаемых останков – например, белковые структуры, закодированные в современных ДНК. Каждая из этих структур – это словно микроскопическое напластование, скопированное в несчетных квадрильонах организмов на протяжении истории жизни на Земле. В результате возникает неприятная проблема: нужно ответить на вопросы, сколько независимых линий жизни могло возникнуть на Земле и сколько случаев абиогенеза в принципе могло иметь место и на нашей планете, и в других уголках Солнечной системы. История генетических ископаемых не предусматривает точной хронологии, которая позволяла бы сопоставлять перемены в генетике с событиями во внешнем мире, и мы, очевидно, не очень-то уверены, что можно было бы считать настоящим научным определением зарождения жизни. Задолго до появления последнего универсального общего предка нам все равно приходится задаваться вопросом, в какой момент можно считать сложную молекулярную структуру «живой». Вопрос этот древний, как сама наука, и лаконичного ответа на него мы до сих пор не сформулировали, поскольку характеристик у жизни множество – от метаболизма до размножения и наследования, от гомеостазиса (регуляции внутренней среды) до способности приспосабливаться к внешней среде. Однако в биологическом подлеске шныряют кое-какие подсказки.

Например, об ответе на этот вопрос нам многое говорит удивительный случай гигантских вирусов [186] Эти зверюшки и в самом деле опровергли множество предрассудков. Прекрасная обзорная статья – James L. Van Etten. Giant Viruses // American Scientist 99 (2011): 304. . Вирусы долго было принято считать «не совсем живыми» – это упрощенные наборы ДНК и РНК, которые получают молекулярный инструментарий для размножения исключительно от организмов-хозяев и, таким образом, полностью от них зависят. Однако природу не так-то легко уложить в рамки классификации. В начале девяностых годов ХХ века исследователи, изучавшие амеб, которые живут в воде кондиционеров и систем охлаждения воздуха, наткнулись на организм, который инфицировал этих крошечных существ. Поначалу его приняли за разновидность бактерий, но затем, в начале двухтысячных, рассмотрели под электронным микроскопом, и оказалось, что это вирус, просто исполинских размеров.

«Мимивирус» имеет в поперечнике около 750 нанометров – настоящий великан среди вирусов. Он не просто гораздо крупнее подавляющего большинства известных вирусов, но еще и несет в себе весьма примечательную ДНК. Эта ДНК содержит почти 1,2 миллиона «буковок»-нуклеотидов, и ее гены кодируют более чем 900 видов белковых молекул. Казалось бы, не так уж много, – в человеческой ДНК закодировано вплоть до 25 000 белковых молекул, – однако стоит учесть, что минимальный генетический код, который мы видели у обычного вируса, состоит всего-то из четырех генов. А столько генетической информации, сколько у мимивируса, нет даже в ДНК некоторых бактерий. Мимивирус – настоящий монстр. Со времени открытия первых гигантских вирусов было обнаружено еще несколько видов (если этот термин тут уместен), в том числе и вирус, получивший довольно громкое название «мегавирус» [187] О его открытии читайте в статье D. Arslan et al. Distant Mimivirus Relative with a Larger Genome Highlights the Fundamental Features of Megaviridae // PNAS 108 (2011): 17486–91. , ДНК которого вмещает примерно на 140 генов больше, чем ДНК мимивируса. Это наводит на мысль, что гигантские вирусы – отнюдь не аномалия, а просто еще один узор в роскошном убранстве жизни.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Калеб Шарф читать все книги автора по порядку

Калеб Шарф - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ошибка Коперника. Загадка жизни во Вселенной отзывы


Отзывы читателей о книге Ошибка Коперника. Загадка жизни во Вселенной, автор: Калеб Шарф. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x