Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной
- Название:Ошибка Коперника. Загадка жизни во Вселенной
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2015
- Город:Москва
- ISBN:978-5-17-091484-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Калеб Шарф - Ошибка Коперника. Загадка жизни во Вселенной краткое содержание
Ошибка Коперника. Загадка жизни во Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
136
Об их исследовании см. H. F. Levison et al. Capture of the Sun’s Oort Cloud from Stars in Its Birth Cluster // Science 329 (2010): 187–90.
137
Археи, подобно бактериям, прокариоты, одноклеточные организмы, в клетках которых нет ядер и других органелл. В 1977 году некоторые виды архей были впервые классифицированы как особый тип прокариотов и выделены в собственное царство, отдельное от бактерий; это сделали Карл Вёзе и Джордж Фокс на основе генетических анализов. Об этом рассказано в статье C. R. Woese, G. E. Fox. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms // PNAS 74 (1977): 5088–90.
138
Не приходится удивляться, что эти оценки варьируются. Приведенная величина основана на авторитетной статье William B. (Brad) Whitman. Prokaryotes: The Unseen Majority // PNAS 95 (1998): 6578–83. Автор исходит из большого количества обоснованных экстраполяций данных, полученных путем исследования различных популяций и сред.
139
Я имею в виду статью P. Falkowski, T. Fenchel, E. Delong. The Microbial Engines That Drive Earth’s Biogeochemical Cycles // Science 320 (2008): 1034–39.
140
Молекулярные машины зачастую состоят из белков, содержащих две и более одинаковые или разные полипептидные цепочки. Вообще говоря, полипептид – это цепочка аминокислот, которые скреплены ковалентными связями в результате обмена электронами между атомами. Ух, какая сложная наука химия…
141
Хороший обзор энергетического бюджета живых организмов на примере сгорания «топлива» см. в статье K. H. Nealson and P. G. Conrad. Life: Past, Present, and Future // Philosophical Transactions of the Royal Society B // Biological Sciences 354 (1999). 1923–39.
142
Кажется, будто процесс выработки метана микробами довольно прост, однако на самом деле, как и большинство метаболических процессов, он задействует безумное количество ферментов и реакций, причем не всегда одинаковых. В сущности, к получению метана приводит три основных метаболических маршрута: восстановление углекислого газа (о нем здесь и идет речь), ферментация соли уксусной кислоты и дисмутация (одновременное окисление и восстановление, в результате которых получаются два вещества) метанола или метиламинов. Каждый из них предполагает множество этапов-реакций.
143
Примеров тому множество. Не так давно было открыто одно особенно удивительное сочетание химических реакций окисления-восстановления, которые идут в разных слоях осадков на морском дне, – расстояние между ними составляет целых 12 миллиметров, для бактерий это очень много. Вероятно, механизм, связывающий эти физические слои, – электрический: возможно, именно бактерии контролируют поток заряженных частиц по планете. L. P. Nielsen et al. Electric Currents Couple Spatially Separated Biogeochemical Processes in Marine Sediment // Nature 463 (2010): 1071–74.
144
Разновидности сине-зеленых водорослей использовали солнечный свет для получения пищи еще более чем 3 миллиарда лет назад. Эти организмы, вырабатывающие кислород, и по сей день встречаются на Земле повсеместно.
145
См., например, N. Lane, W. F. Martin. The Origin of Membrane Bioenergetics // Cell 151 (2012): 1406–16.
146
Бактерии, например, могут обмениваться небольшими поднаборами генетического материала в виде плазмид. Эти плазмиды часто существуют в клетке в виде небольших колец ДНК (независимых от хромосомной ДНК) и содержат генетические коды размером от тысячи до миллиона базовых пар (знаков). Зачем природа придумала такое? Одно из преимуществ микробов состоит в способности делиться ДНК, в которой закодировано сопротивление неблагоприятным факторам вроде антибиотиков. В сущности, распределение плазмид увеличивает шансы на выживание целой популяции, а не только отдельной особи, которой повезло обрести нужную мутацию.
147
Эта идея пока не вполне доказана. Изучение скальных пород показывает, что примерно 650–750 лет назад, возможно, был период глобального похолодания, и тогда, вероятно, было так холодно, что даже на самых низких широтах все было покрыто льдом. То, в какой степени Земля замерзла, почему это произошло и как климат снова потеплел, до сих пор вызывает споры. Доводы в пользу гипотезы «снежка» см., например, в статье P. F. Hoffman et al. A Neoproterozoic Snowball Earth // Science 281 (1998):1342–46. Планеты, на поверхности которых есть вода, и в самом деле подвержены процессу положительной обратной связи, когда лед отражает больше солнечной энергии, чем жидкая вода, и поэтому температура на поверхности падает еще сильнее. Вероятно, состояния «снежка» среди экзопланет не редкость.
148
См., например, обсуждении в статье B. J. McCall and T. Oka. H 3 +– an Ion with Many Talents // Science 287 (2000): 1941–42.
149
См. D. F. Strobel. Molecular Hydrogen in Titan’s Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions // Icarus 208 (2010): 878–86
150
И в самом деле, есть несколько работ о структуре более абстрактных метаболических систем и об углеродной химии, в которых предполагается, что метаболизм, основанный на углероде, был «почти достоверным» событием, своего рода аттрактором в пространстве вероятностей. См. R. Braakman and E. Smith. The Compositional and Evolutionary Logic of Metabolism // Physical Biology 10 (2012): 011001.
151
Измерение нисходящего потока молекулярного водорода в атмосфере Титана привело к пересмотру и возобновлению дискуссии о жизни на этом небесном теле. См. уже упоминавшуюся ранее статью D. F. Strobel. Molecular Hydrogen in Titan’s Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions // Icarus 208 (2010): 878–86 (и список литературы в этой статье).
152
Это делается при помощи инструментов «метагеномики», когда изучаются образцы, полученные из естественной среды, и изучается генетическое разнообразие определенных важнейших генов, которыми так или иначе пользуются все живые организмы. Например, рибосомальная последовательность РНК 16S состоит из 1542 нуклеиновых кислот – «букв», и эта последовательность, как говорят биологи, высоко консервативна, то есть случайные мутации в ней вызывают осложнения и быстро уничтожаются путем естественного отбора, а значит, любая версия, как правило, соответствует своему биологическому виду. Если изучить разнообразие вариантов этой последовательности в образце, можно получить оценку количества разных видов бактерий и архей в нем.
153
См., например, обзор J. M. Beck, V. B. Young, and G. B. Huffnagle. The Microbiome of the Lung // Translational Research 160 (2012): 258–66.
154
Об этой поразительной области исследований написано много превосходных работ. Отличная научно-популярная статья – J. Ackerman. The Ultimate Social Network // Scientific American 306 (2012): 36–43. Хотя по поводу микрофауны человека постоянно появляются новые работы, исследование микробов желудочно-кишечного тракта в 2010 году производилось в рамках проекта «MetaHIT» («Metagenomics of the Human Intestinal Tract»). Отчет о нем см. в статье J. Qin et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing // Nature 464 (2010): 59–65.
Читать дальшеИнтервал:
Закладка: