Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет
- Название:Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет
- Автор:
- Жанр:
- Издательство:Array Литагент «Аттикус»
- Год:2015
- Город:Москва
- ISBN:978-5-389-09938-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет краткое содержание
О том, как этому научиться, рассказывает Нейт Сильвер, политический визионер и гуру статистики, разработавший систему прогнозов, позволившую дважды максимально точно предсказать результаты президентских выборов почти во всех штатах Америки. Его книга во многом близка исследованиям Нассима Талеба и столь же значима для всех, кто имеет дело с большими объемами данных и просчитывает различные варианты развития событий. И если Талеб говорит о законах зарождения «черных лебедей», Сильвер исследует модели и способы, позволяющие поймать этих птиц в расставленные нами сети. Он обобщает опыт экспертов-практиков, изучает различные модели и подходы, позволяющие делать более точные прогнозы. Как и Даниэль Канеман, автор бестселлера «Думай медленно… Решай быстро», наблюдая за поведением и мышлением людей, оценивающих неопределенные события, Сильвер утверждает: да, компьютеры незаменимы при работе с огромными массивами данных, но для максимальной точности результатов необходим гибкий человеческий ум и опыт, ведь прогнозирование – это планирование в условиях неопределенности.
Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Во время разговора с участниками команд в Чикаго и Питтсбурге я иногда вспоминаю о красивых новых торговых центрах в Китае. Центрах, в которых есть невероятные интерьеры – римские колонны, американские горки и венецианские каналы, – но нет посетителей или магазинов-арендаторов. Исследователи из обеих команд уже пришли к некоторым невероятно полезным и действенным заключениям. Например, доктор Грефенстетте вычислил, что закрытие школ может приводить к неблагоприятным последствиям, если происходит слишком быстро или слишком ненадолго, а команда из Чикагского университета пришла к выводу, что необычно большое количество случаев заболеваний MRSA-инфекцией в центральной части Чикаго было вызвано перемещением людей в окружную тюрьму Кук и из нее. Однако по большей части модели заточены под создание прогнозов на будущее и готовы использовать данные, которых еще нет.
Модели, основанные на методах агентного моделирования, в отличие от методов, используемых при создании прогноза погоды, которые могут уточняться ежедневно, сложно протестировать. Вспышки серьезных заболеваний возникают не так уж часто. И даже хорошие модели могут пасть жертвой собственного успеха из-за присущего им свойства самоотмены. В данном случае правильное предсказание будущего способно изменить ход событий: будущее станет значительно более благоприятным. Представьте себе, что модель говорит о том, что некое действие – например, закрытие школ в одном графстве – может оказаться очень эффективным. И это действие срабатывает! Распространение болезни в условиях реального мира замедляется. Но это же заставляет модель выглядеть в ретроспективе слишком пессимистичной.
Именно поэтому команды из Питтсбурга и Чикаго не решаются использовать свои модели для создания конкретных предсказаний. Другие ученые были менее осторожны в преддверии всплеска свиного гриппа 2009 г., и кое-кто выдал достаточно плохие предсказания {533}, иногда значительно недооценивая масштабы распространения гриппа.
В настоящее время работа команд ограничена в основном тем, что коллега доктора Даума Чип Масал называет «моделирование для глубокого понимания». Иными словами, агентное моделирование может помочь нам проводить эксперименты, позволяющие больше узнать об инфекционном заболевании, но пока что маловероятно, что они помогут предсказать их всплеск.
Что делать, когда прогнозы неутешительны
Итак, оказалось, что две последние и значительные волны страхов, вызванных гриппом в Соединенных Штатах, оказались достаточно беспочвенными. В 1976 г. не наблюдался всплеск заболеваний, вызванных вирусом N1H1, за исключением случаев в Форт-Дикс, а программа массовой вакцинации президента Форда начала казаться чрезмерной. В обоих случаях прогнозы правительства относительно масштабов вспышки заболевания были достаточно неточными.
Но при этом нет никакой гарантии, что ошибка не повторится в следующий раз, когда придет грипп. Адаптировавшийся к человеческому организму штамм птичьего гриппа H5N1 мог убить сотни миллионов людей. Он распространялся так же легко, как и H1N1 версии 2009 г., однако его расчетная смертность была вполне сопоставима с версией 1918 г., и могло бы погибнуть 1,4 млн американцев. Имеются также потенциальные угрозы со стороны других вирусов, например вируса атипичной пневмонии SARS и даже оспы, уничтоженной в мире к 1977 г., но которая теоретически может вновь оказаться среди нас (например, в виде биологического оружия, примененного террористами) и способна убить миллионы. По определению, самые серьезные эпидемии могут прогрессировать крайне быстро. В 2009 г. штамму H1N1 потребовалось около недели, чтобы из болезни, не замечаемой медицинским сообществом, превратиться в болезнь, потенциально способную убить миллионы людей.
Эпидемиологи, с которыми я общался перед написанием этой главы, – в отличие от своих коллег в других областях – отлично представляют себе ограничения, присущие их моделям. «Было бы глупо заниматься предсказаниями, основываясь на трех точках данных, – сказал мне Марк Липсиц, имея в виду пандемии гриппа в 1918, 1957 и 1968 гг. – Все, что вы можете сделать, – это распланировать различные сценарии». Если вы не можете создать хороший прогноз, то будет крайне неправильным притворяться, что это вам под силу. Я подозреваю, что эпидемиологи и другие представители медицинского сообщества понимают это благодаря своей приверженности клятве Гиппократа. Primum non nocere – Прежде всего не навреди.
Представители медицинской профессии выполнили большое количество работ, касающихся правильного и неправильного использования статистических моделей и надлежащей роли прогнозов {534}. Я не хочу сказать, что прогнозы экономистов (в отличие от прогнозов эпидемиологов) не основаны ни на чем. Однако вследствие довольно тесной связи медицины с вопросами жизни и смерти врачи склонны к осторожности. В области их деятельности глупые модели способны привести к смерти людей. И знание этого факта обладает отличным отрезвляющим эффектом.
Кое-что стоит сказать и об идее «моделирования для глубокого понимания» Чипа Масала. Философия этой книги состоит в том, что предсказание – это средство, а не цель. К примеру, оно играет крайне важную роль при тестировании гипотез, а значит, и в развитии науки в целом {535}.
Когда-то статистик Джордж Э. П. Бокс написал: «Все модели неправильны, но некоторые модели полезны» {536}. Он имел в виду, что все модели представляют собой упрощение Вселенной, как и должно быть. Еще один ученый, математик, сказал: «Лучшая модель кошки – это кошка» {537}. Все остальное предполагает, что мы исключаем какие-то детали. Степень уместности каждой детали будет зависеть от проблемы, которую мы пытаемся решить, и от того, насколько точный ответ нам требуется.
Статистические модели – не единственные инструменты, которые мы используем для созданий аппроксимаций, позволяющих получить какое-либо представление о Вселенной. Например, язык представляет собой тип модели или аппроксимацию, которую мы используем для общения друг с другом. В каждом языке есть слова, не имеющие прямых аналогов в других, хотя все они пытаются объяснить одну и ту же Вселенную. Свой специализированный язык есть и в технических областях деятельности. Для вас и для меня цвет обложки этой книги – желтый, а графический дизайнер будет использовать более специфический термин, например Pantone 107.
Но, как писал Бокс, модели могут быть полезны. Мне представляется, что работа, которую проделывают команды из Чикаго или Питтсбурга со своими имитационными моделями, в высшей степени полезна. Понимание того, что думают о вакцинации различные этнические группы, как передается болезнь в разных районах города или как реагируют люди на сообщения о гриппе, важно само по себе.
Читать дальшеИнтервал:
Закладка: