Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет
- Название:Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет
- Автор:
- Жанр:
- Издательство:Array Литагент «Аттикус»
- Год:2015
- Город:Москва
- ISBN:978-5-389-09938-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет краткое содержание
О том, как этому научиться, рассказывает Нейт Сильвер, политический визионер и гуру статистики, разработавший систему прогнозов, позволившую дважды максимально точно предсказать результаты президентских выборов почти во всех штатах Америки. Его книга во многом близка исследованиям Нассима Талеба и столь же значима для всех, кто имеет дело с большими объемами данных и просчитывает различные варианты развития событий. И если Талеб говорит о законах зарождения «черных лебедей», Сильвер исследует модели и способы, позволяющие поймать этих птиц в расставленные нами сети. Он обобщает опыт экспертов-практиков, изучает различные модели и подходы, позволяющие делать более точные прогнозы. Как и Даниэль Канеман, автор бестселлера «Думай медленно… Решай быстро», наблюдая за поведением и мышлением людей, оценивающих неопределенные события, Сильвер утверждает: да, компьютеры незаменимы при работе с огромными массивами данных, но для максимальной точности результатов необходим гибкий человеческий ум и опыт, ведь прогнозирование – это планирование в условиях неопределенности.
Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 9.2.Расположение фигур после третьего хода Каспарова в первой партии
Даже когда разыгрываются популярные шахматные ходы, количество возможных ответвлений на дереве настолько велико, что базы данных становятся бесполезными примерно после 10–15 ходов. В любой достаточно длинной шахматной партии со временем вполне может возникнуть ситуации, с которой никогда не сталкивался никто из шахматистов в истории человечества. Однако Каспаров смог «отключить» базу данных после всего лишь трех ходов. Как мы постоянно видим в этой книге, исключительно статистические подходы к прогнозированию оказываются в лучшем случае неэффективными при отсутствии достаточной выборки данных для работы. Deep Blue пришлось «думать» за себя.
Дилемма шахматиста: ширина против глубины
Середина шахматной партии (обычно называемая миттельшпиль ) потенциально позволяет использовать сильные стороны компьютера. Когда у фигур есть возможность сдвинуться в центр доски, то в среднем существует около 40 возможных ходов вместо 20 {631}. Это может показаться не особенно большой разницей, однако из-за того, что древо возможностей разрастается в геометрической прогрессии, количество возможных вариантов ходов быстро увеличивается. Предположим, например, что вы хотите рассчитать всего три следующих хода (точнее, по три хода ваших и вашего противника, то есть всего шесть ходов). В начале партии значение этой функции рассчитывается примерно как 20 в шестой степени – то есть существует 64 млн позиций, и это уже гигантское число. Однако в середине игры вам уже нужно рассчитать 40 в 50‑й степени комбинаций, или 4,1 млрд возможностей. Deep Blue мог бы рассчитать все эти положения всего за 20 секунд. А Каспарову для этого потребовалось бы буквально 43 года, даже без перерывов на еду, сон или туалет.
Великие игроки типа Каспарова не обманывают себя и не верят в то, что им под силу рассчитать все эти варианты. Именно это и отличает лучших игроков от любителей. В своем знаменитом исследовании шахматистов голландский психолог Адриаан де Гроот обнаружил, что любители при столкновении с шахматной проблемой часто начинают напряженно искать идеальный ход и в итоге не могут сделать ни одного {632}.
Мастера игры в шахматы, напротив, ищут хороший ход – и, по возможности, лучший ход в любой позиции, – однако они скорее прогнозируют , как этот ход изменит их положение, а не пытаются оценить любую возможность. Было бы «чистой фантазией», писал американский гроссмейстер Рейбен Файн {633}, предполагать, что люди-шахматисты заранее рассчитывают каждую позицию перед тем, как сделать 20 или 30 шагов.
Но сказать, что «идеальное – враг хорошего», просто. Если вы хотите серьезно освоить такой вид искусства как шахматы, то порой вам нужно шагнуть за пределы простой эвристики. Тем не менее мы все равно неспособны создавать идеальные решения, когда нам поступает больше информации, чем мы можем обработать в ограниченный промежуток времени. Признавая свое несовершенство, мы обретаем свободу, что позволяет нам находить лучшие решения и в шахматах, и в других областях, вовлекающих прогнозирование.
Я не хочу сказать, что таким гроссмейстерам, как Каспаров, не нужно ничего рассчитывать. Как минимум Каспаров должен разработать тактику, точную последовательность трех-пяти ходов для захвата фигуры соперника или достижения другой краткосрочной цели. Для каждого из этих ходов он должен продумать возможную реакцию оппонента – все возможные вариации – и оценить, способен ли какой-нибудь из ходов оппонента свести его тактику на нет. Также ему нужно удостовериться в том, что соперник не устроил ему никаких ловушек; если король игрока не защищен, то самая сильная позиция может привести к мату буквально за несколько ходов.
Для того чтобы научиться, на чем именно стоит сосредоточиться во время игры, необходимы и память, и опыт. Иногда для этого требуется пройти по многим ветвям дерева, но лишь на пару ходов вглубь; в других случаях шахматисты концентрируются лишь на одной ветке, но производят более глубокие расчеты. Такой тип компромисса между шириной и глубиной возникает каждый раз, когда мы сталкиваемся со сложной проблемой. Например, Министерство обороны США и ЦРУ должны решить, отслеживать ли им широкий спектр сигналов для предсказания и предотвращения возможных террористических атак или сконцентрироваться на том, что они считают наиболее вероятной угрозой. Лучшим мировым шахматистам отлично удается метапознание – осознание того, как они мыслят, – и способность откорректировать этот процесс, когда им кажется, что в их мышлении нарушен баланс.
Стратегия против тактики
До некоторой степени шахматные компьютеры развиваются в двух направлениях. Они используют эвристику для того, чтобы «обрезать» свои деревья поиска, направляя свою вычислительную мощность на самые многообещающие ветви, а не просчитывая каждую с одинаковой степенью глубины. Однако поскольку скорость обработки информации у них высока, им не нужно идти на серьезные компромиссы – они могут понемногу оценивать каждую возможность и изучать в деталях те из них, которые кажутся самыми важными.
Однако компьютерные шахматные программы не всегда могут увидеть общую картину и думать стратегически. Они хороши для расчета тактики достижения какой-то ближайшей цели, однако значительно менее успешны в определении самой значимой из них в более масштабной схеме игры.
Каспаров попытался воспользоваться слепыми пятнами в эвристике Deep Blue, вынуждая его бездумно следовать планам, которые не улучшают стратегическую позицию.
Компьютерные шахматные программы часто предпочитают краткосрочные цели, которые могут быть разделены и квантованы и для достижения которых не требуется анализировать шахматную доску как целостный организм. Классический пример искажения в работе компьютера – это его готовность принять жертвы ; компьютер часто соглашается, когда хороший игрок предлагает обменять более сильную фигуру на более слабую.
Эвристическое правило «Принимать обмен, когда противник отказывается от более сильной фигуры» обычно оказывается правильным – но не всегда в случаях, когда вам противостоит игрок вроде Каспарова, готовый сознательно ослабить свою позицию. Он знает, что тактическая потеря перевешивается стратегическим преимуществом. В ходе первой игры Каспаров предложил Deep Blue на 30‑м ходу обменять ладью на слона, и, к его радости, Blue согласился [117]. Возникла позиция (рис. 9.3а), которая помогает проиллюстрировать идею слепых пятен, появляющихся вследствие отсутствия у компьютера стратегического мышления.
Читать дальшеИнтервал:
Закладка: