Марио Ливио - От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной
- Название:От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной
- Автор:
- Жанр:
- Издательство:Array Литагент «АСТ»
- Год:2015
- Город:Москва
- ISBN:978-5-17-088983-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной краткое содержание
От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Я несколько раз подчеркивал, что сама идея стационарной Вселенной на тот момент, когда ее сформулировали, была блистательна. Вообще говоря, стационарная Вселенная, предполагающая постоянное создание материи, обладает множеством общих черт с модной сейчас инфляционной моделью Вселенной , согласно которой космос в возрасте доли секунды пережил рывок роста со скоростью выше скорости света. В некотором смысле стационарная Вселенная – это Вселенная, в которой инфляция происходит непрерывно. Впервые об инфляционной модели заговорил физик Алан Гут [378]в 1981 году: помимо всего прочего, она объясняла однородность и изотропию Вселенной. В статье, написанной совместно с Нарликаром в 1963 году, Хойл не без злорадства показал, что «поле рождения», существование которого они предположили, «ведет себя таким образом, чтобы сгладить первоначальную анизоторопию или неоднородность» и что «похоже, что наблюдаемую сейчас регулярность Вселенная приобрела независимо от первоначальных граничных условий». Именно эти качества сейчас приписывают инфляции [379]. Кроме того, блистательный ум Хойла проявился и в том, что он принадлежал к крошечной исследовательской группе, которая изучала две взаимоисключающие теории параллельно. Несмотря на то что Хойл всю жизнь сражался с теорией Большого взрыва, он получил важные результаты в области нуклеосинтеза при Большом взрыве [380][377], в частности, в том, что касается преобладания в космосе гелия и синтеза элементов при сверхвысоких температурах.
Как-то раз лорд Рис сказал, что Хойл – «астрофизик, выделявшийся среди ученых своего поколения и оригинальностью мышления, и творческим началом». Я как скромный астрофизик всей душой с этим согласен. Теории Хойла, даже те, которые впоследствии оказались ошибочными, всегда будоражили умы, придавали энергии целым областям знания, становились катализаторами новых идей. Неудивительно, что памятник Хойлу (илл. 31) стоит теперь в Кембридже у входа в здание, названное в его честь, на территории Института теоретической астрономии, который он основал в 1966 году.
При всей масштабности достижений Хойла никто не сомневается, что своим нынешним пониманием устройства мироздания мы прежде всего обязаны Альберту Эйнштейну. Его общая и специальная история относительности полностью перевернули наши представления о двух самых что ни на есть основных понятиях, какие только можно придумать – о пространстве и времени. Как ни странно, с одной из идей этой культовой фигуры в мире науки связано выражение «величайший ляпсус».
Глава 10. «Величайший ляпсус»
Предмет моих изысканий распыляет целые галактики, зато объединяет Землю. Да не разлучит нас никакое «всемирное отталкивание»!
Сэр Артур ЭддингтонЕсли я подброшу в воздух связку ключей, они достигнут какой-то максимально высокой точки и затем упадут обратно мне в руку. И лишь на миг – в той самой максимально высокой точке – замрут в неподвижности. Очевидно, за такое поведение отвечает гравитационное притяжение Земли. Если бы мне каким-то образом удалось разогнать ключи до скорости больше 11 километров в секунду, они бы улетели прочь от Земли, как, скажем, беспилотный космический аппарат «Пионер-10». Однако в отсутствие силы, противодействующей притяжению Земли, подвесить ключи в воздухе не получится. В 1920 годы двое ученых независимо показали, что и пространство-время во Вселенной, похоже, ведет себя примерно так же. Эти исследователи – советский математик и метеоролог Александр Фридман и бельгийский космолог и священник Жорж Леметр – применили общую теорию относительности Эйнштейна к Вселенной в целом. Вскоре они обнаружили, что гравитационное притяжение всей материи и давление излучения во Вселенной приводит к тому, что пространство-время либо растягивается, либо сокращается, но точно не способно сохраняться неподвижным и неизменным. Это важное открытие впоследствии заложило теоретическую основу под открытие Леметра и Хаббла, что наша Вселенная расширяется. Но давайте начнем с начала.
В 1917 году сам Эйнштейн [381]первым попытался осмыслить эволюцию Вселенной в целом в свете своих уравнений общей теории относительности. Это послужило толчком к переходу космологических задач из области спекулятивной философии в сферу физики. Расширение Вселенной к тому времени еще не открыли. Мало того что Эйнштейну ничего не было известно о крупномасштабной динамике вещества во Вселенной – в те годы большинство астрономов еще пребывали в убеждении, что Вселенная состоит исключительно из нашей галактики Млечный Путь, а вне ее нет абсолютно ничего. Весто Слайфер уже наблюдал красное смещение (изменения светового спектра излучения, которые впоследствии объяснили удалением излучающего вещества от наблюдателя с определенной скоростью) в «туманностях» (« nebulae »), однако его результаты еще не были ни широко известны, ни верно истолкованы. Астроном Гебер Кертис уже представил некоторые предварительные результаты исследований, свидетельствовавшие о том, что галактика Андромеда – М31 – вероятно, лежит вне Млечного Пути, однако окончательные доказательства этого фундаментального факта – что наша галактика не составляет всю Вселенную – Эдвин Хаббл нашел лишь в 1924 году [382].
В 1917 году Эйнштейн был убежден, что космос на самом крупном масштабе неизменен и статичен, поэтому ему нужно было найти какой-то способ доказать, что Вселенная, описываемая его уравнениями, не рухнет под собственным весом. Чтобы добиться статической конфигурации с равномерным распределением материи, Эйнштейн выдвинул предположение, что должна быть какая-то отталкивающая сила, которая в точности уравновешивает гравитацию.
Поэтому, когда прошло чуть больше года после публикации общей теории относительности, Эйнштейн пришел к блестящему – по крайней мере, на первый взгляд – решению. В своей эпохальной статье под названием «Космологические соображения к общей теории относительности» он ввел в свои уравнения новый член. Этот член привел к неожиданному эффекту – возникновению отталкивающей гравитационной силы! Предполагалось, что всемирное отталкивание действует по всей Вселенной, благодаря чему каждая часть пространства отталкивается от всех остальных частей, а это полностью противоположно поведению материи и энергии. Как мы вскоре обнаружим, масса и энергия искривляют пространство-время таким образом, что вещество стремится к уплотнению. Новый космологический член уравнений ловко сворачивал пространство-время в противоположную сторону – так, чтобы материя расходилась в разные стороны.
Сила отталкивания определялась значением новой постоянной, которую ввел Эйнштейн (помимо уже знакомой нам силы тяготения). Эту постоянную, известную в наши дни как космологическая постоянная , обозначают греческой буквой «лямбда» – l.
Читать дальшеИнтервал:
Закладка: