Линн Фостер - Нанотехнологии. Наука, инновации и возможности
- Название:Нанотехнологии. Наука, инновации и возможности
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2008
- Город:Москва
- ISBN:978-5-94836-16
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Линн Фостер - Нанотехнологии. Наука, инновации и возможности краткое содержание
В предлагаемой книге авторы – известные ученые и бизнесмены, занимающиеся теоретическими и практическими проблемами нанотехнологий, – описывают состояние дел и перспективы их развития на ближайшее десятилетие, а также возможное воздействие нанотехнологий на глобальные процессы.
Книга предназначена для широкого круга читателей: научных работников, специалистов, а также студентов профильных учебных заведений.
Перевод: Арсен Хачоян
Нанотехнологии. Наука, инновации и возможности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существует классический вопрос, который постоянно задают друг другу биологи и физики: почему природа никогда не использует в биологических структурах колесо? Ответ обычно сводится к тому, что колесо представляет собой изолированную структуру, которую организму трудно «обслуживать» (смазывать, снабжать кровью, наращивать и т. п.). Поэтому мы не будем пока вспоминать о колесе, а начнем конструировать наши микророботы из проверенных природой и временем деталей. Вспомним, что бактерии двигаются посредством щупальцев, называемых флагеллами (отростки, имеющие форму штопора), и закрученных ворсинок, позволяющих им перемещаться в вязких средах. Именно флагелла в биологии простейших обладает действительно необычной, отдельной, подвижной (ее можно даже назвать съемной!) деталью. Я говорю о том, что на конце флагеллы обычно располагается некое подобие диска, покрытого белками и ферментами. На этой поверхности могут происходить сложные ферментные реакции с молекулой АТФ (адезинтрифосфорная кислота, обычный источник энергии в биологических структурах), в результате чего диск прокручивается на некоторый угол, позволяя осуществлять вращательные движения отдельными щупальцами или ворсинками. (Фейнман демонстрирует руками молекулярные конформации, приводящие к вращению.) После окончания реакции молекула АТФ отделяется и движение прекращается, но затем к диску присоединяется другая молекула АТФ и т. д., так что вся структура, напоминающая известный в механике храповик, постоянно вращается и заставляет (через трубку) вращаться спиральное щупальце, флагеллу микроорганизма.
Более двадцати лет назад, когда я прочел лекцию, мой друг Ал Хибс, представивший меня аудитории сегодня, первым предложил использовать микроустройства в медицинских целях. Сейчас, когда я заговариваю об этом, мне постоянно отвечают: «Прекрасно! Давайте сделаем устройство размером с клетку и научимся применять его. Если у вас проблемы с печенью – просто проглотите немного клеток печени и постарайтесь выздороветь!» На самом деле в те годы я, естественно, говорил о гораздо более крупных устройствах, а Хибс первым предложил создать микроскопического «хирурга», то есть снабженную инструментами и инструкциями лечебную машину. Ее можно ввести в организм больного и применять для самых различных целей (например, она может просто разыскивать в ваших артериях жировые бляшки и уничтожать их!).
Идея состоит в том, что мы можем научиться вводить в биологические системы управляемые устройства, которые затем по инструкциям или командам будут производить требуемый «ремонт» органов, удаляя или, наоборот, добавляя к ним необходимые структуры. Если сама мысль о создании и использовании микроскопических устройств не кажется вам безумной, то можно сказать, что широкое использование таких автоматических роботов в медицинской практике является лишь вопросом времени. Мне представляется разумной разработка проглатываемых устройств, управляемых по тонким проводам. Многим из нас приходилось в лечебных и диагностических целях заглатывать толстые или тонкие трубочки (например, при обследования желудка и т. д.), а для управления роботами понадобятся лишь очень тонкие провода. Кроме того, провода будут полезны для точной локализации самих роботов.
Вообще говоря, применение проводов в этой методике играет побочную роль, и мы можем даже прекрасно обойтись без них, управляя движением устройств различными внешними источниками (магнитными полями, индукцией и т. п.). Я говорю не о создании особо мелких устройств типа упоминавшихся выше моторов, а об аппаратах вполне разумных и представимых размеров. Почему нам не начать с производства приборов, имеющих размеры около сантиметра или меньше? В таких делах важно начало, а дальнейшее уменьшение размеров изделий будет происходить само собой. Предположим, мы запускаем в организм микроскопического «хирургического» робота и следим за его перемещением при помощи, например, рентгеновской или ЯМР-установки. В требуемый момент мы подаем команду, и робот по сигналу начинает операцию. В любом случае, мы контролируем его положение и поведение.
Мне нравится идея Хибса о «проглатываемом хирурге», однако по-настоящему она получит развитие лишь тогда, когда мы научимся изготавливать очень маленькие устройства, которые могут стать промежуточным этапом на пути создания самых крошечных машин, которые я в названии этой беседы назвал «инфинитезимальными», то сеть бесконечно малыми.
20.7. Изготовление точных изделий грубыми инструментами
При любом разговоре о малых и сверхмалых машинах или устройствах неизбежно возникает проблема точности их изготовления. Стремление к миниатюризации очень быстро сталкивается с границами точности механической обработки деталей. Именно точность обработки (класс точности, как говорят инженеры) определяет реальную ценность устройства. Бессмысленно создавать изделия просто меньшего размера из деталей с низким классом точности обработки поверхностей, так как «шатающиеся» подшипники и неточно подогнанные болты не позволят производить высококачественные детали.
Вопрос о точности заставляет нас задуматься об очень сложных проблемах. Например, в этой связи уместно напомнить, что вся история человечества связана с прогрессом в точности обработки предметов и изделий. Когда первобытные люди впервые начали применять орудия труда и охоты, в их распоряжении были лишь палки и камни, но уже тогда наши предки инстинктивно старались подбирать прямые и длинные палки или более округлые камни, которыми было удобнее пользоваться. Никакой точности обработки не существовало и в помине! Всю дальнейшую историю люди старались сделать свои инструменты совершенными и эффективными, благодаря чему мы сейчас живем среди множества высокоточных, ценных и полезных предметов.
С чего следует начать развитие сверхмалых машин? Каким образом мы обеспечиваем точность изготовляемых изделий? Любой слесарь и механик прекрасно понимает это, но лишь до тех пор, пока речь идет о крупных изделиях. Наши первобытные предки начинали обработку с того, что били камни друг об друга, стараясь придать им более правильную и удобную форму. Отмечу, что, расколов камень на две части, вы получаете куски, которые хотя бы примерно подходят друг к другу, то есть их впадины и выпуклости имеют какие-то соответствия. Попробовав достаточно долго «тереть» куски камня друг об друга, каждый может получить почти ровные, очень гладкие, притертые поверхности. Когда я был мальчишкой, мы с друзьями в Бостоне любили полировать кусочки мягкого песчаника, и у нас это неплохо получалось. Студентом МТИ я забавлялся притиркой снежков из разных видов снега (твердого спрессованного снега и пушистого, свежевыпавшего), и мне удавалось создавать шары с очень аккуратной сферической поверхностью.
Читать дальшеИнтервал:
Закладка: